O Physicité IPhO : Mécanique

Nous devons envisager [’état présent de ['univers comme leffet de son état antérieur et comme
la cause de celui qui va suivre.
— Pierre-Simon Laplace
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Introduction

La mécanique est le domaine de la physique dont 'objet d’étude est le mouvement et la
déformation des systemes physiques. On entend par systéme physique n’importe quelle partie
de l'univers que l'on choisit d’analyser, de 'atome jusqu’a la galaxie, en passant par des objets
qu’il est plus facile d’appréhender a notre échelle, comme une balle de tennis... Cette diversité
de systemes d’étude donne naissance a différentes sous-branches de la mécanique. Etudier le
mouvement des molécules d’eau dans un tuyau releve de la mécanique des fluides, tandis que
décrire la trajectoire d’'une comete releve de la mécanique céleste. Ces sujets ont une racine
commune, la mécanique Newtonienne, ou mécanique classique, dont il est question ici.

L’objectif de ce cours est double : on cherche a décrire le mouvement des sytemes phy-
siques - c’est la vocation de la cinématique - et prédire ce mouvement en connaissant ses
causes - c’est la vocation de la dynamique. Finalement, pour comprendre le dialogue entre
la mécanique et la thermodynamique, ’électromagnétisme au autre piéce essentielle de la
physique, il est de mise d’interpréter les lois de la dynamiques du point de vue des échanges
d’énergie entre les sytémes.

1 La cinématique, ou comment décrire le mouvement

Pour étudier un systeme physique en déplacement, il est nécessaire de choisir un repére,
c’est-a-dire un systéme de coordonées permettant de situer le systeme dans U'espace. Il existe
plusieurs systemes de coordonnées différents, et il est primordial de savoir choisir lequel
utiliser. Un choix de repére judicieux permet de résoudre un probleme en quelques lignes, la
ou un autre repéere mene a des calculs beaucoup plus fastidieux (voire douloureux).

Comment faire le bon choix et économiser de la craie? On choisit un systeme de coor-
données en s’appuyant sur les symétries du probléme. Il est nécessaire de savoir utiliser les
différents systemes de coordonnées, et de connaitre les expressions correspondantes de la
position, de la vitesse, et de l'accélération. Il est également important de savoir jongler en
passant d’un systeme de coordonnées a un autre.

1.1 Coordonnées cartésiennes

On munit 'espace d’un repere orthonormé direct (Ozyz).
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Figure 1 — Systeme de coordonnées cartésiennes
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Dans ce systeme de coordonnées, la position d’un point matériel M est repérée par :

xT
-
OM = ze; +ye, +ze2 = |y

4

Définition 1: Vecteur position

= 2 ang .
OM est appelé vecteur position. Ses composantes z(t), y(t), z(t) sont des fonctions
dépendantes du temps.

Définition 2 : equation*s horaires

On appelle équations horaires les équations qui décrivent [’évolution temporelle du
vecteur position

Exemple : Une particule initialement en O se déplace a vitesse constante v dans le plan (Oxy)
incliné d’un angle « par rapport a l’axe des z.

y Y

M‘U/'
0N s

.
|

Figure 2 — Palet glissant sur un plan incliné

Les équations horaires sont :
x(t) =vcos(a)t
y(t) = vsin(a)t
Définition 3 : Trajectoire

La trajectoire du point M est l’ensemble des positions prises par M au cours du
mouvement.

La trajectoire est donc décrite par une ou plusieurs équation qui ne font pas apparaitre
explicitement le temps t.
Exemple : en reprenant U'exemple du plan incliné, la trajectoire est donnée par ’équation :

y = tan(a)
qui n’est autre que l’équation d’une droite de coefficient directeur tan(«) passant par lorigine.

On cherche maintenant a définir la notion de vitesse. Prenons un coureur qui se déplace sur
une ligne droite, et qui réalise un 100 metres en 10 secondes. On définit sa vitesse moyenne
sur toute la course comme la distance parcourue divisée par la durée de la course (10 metres
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par secondes ici). Comme son nom lindique, cette vitesse est une moyenne, elle est donc
insuffisante pour attester du fait que le coureur peut accélérer pendant la course. On pallie ce
probléme en prenant un intervalle de temps de plus en plus court pour évaluer la distance
parcoure.

On définit alors naturellement le vecteur vitesse d’'un comme le taux de variation temporel
de la position.

Définition 4 : Vecteur vitesse

On appelle vecteur vitesse instantanée (ou simplement vecteur vitesse) la dérivée
temporelle de la position :
T
dOM
v ==
dt

—

Ici, les vecteurs ¢ sont fixes, ils ne dépendent pas du temps. On obtient alors simplement :

dy
dt

— dz

(t) e, +

—
dOM dx
V() = = vt

eOM _ ax .\ — —
pn g (t)es + (t) ez
Propriété 1:

Le vecteur vitesse est tangent a la trajectoire.

—

Figure 3 — Vecteur vitesse d’un oiseau dans un virage

dx . d*x

Remarque : On utilisera par la suite la notation &(t) = a(t), i(t) = W(t)"" Il faut d’autre part

insister sur le fait que le terme "vitesse" est ambigu. En effet, il ne faut pas confondre le
vecteur vitesse (qui possede en géenéral trois composantes) et la norme du vecteur vitesse.

De méme, l’accélération est définie comme le taux de variation temporel de la vitesse.

Définition 5 : Vecteur accélération

On appelle vecteur accélération la dérivée temporelle de la vitesse :

dv

dt

En coordonnées cartésiennes :

4/37



O Physicité

1.2 Coordonnées polaires et cylindriques

<

IPhO : Mécanique

v

Figure 4 — Systéme de coordonnées polaires

Nous allons maintenant traiter des coordonnées adaptées aux systemes qui présentent
un axe privilégié de rotation, par exemple une mouche qui se déplace selon un cercle. Notre
mouche est ici un point M se déplagant dans le plan (Ozy). On peut repérer sa position de

deux maniéres différentes :

— Avec les coordonnées (z,y) appelées coordonnées cartésiennes.

On notequexz cRetyeR.

. T . \ . =y 4
— Avec les coordonnées (r,6), c’est-a-dire la distance a Uorigine et l’angle que fait OM avec

'axe des z, appelées coordonnées polaires.
On note que r € [0,4o0[ et 0 € [0, 27]

On peut facilement exprimer ces coordonnées les unes en fonction des autres :

x = rcos(f)
y = rsin(f)

r= g

Remarque : Ce systéme de coordonnées est particulierement adapté a ’étude de mouvements

circulaires, ou la distance a l'origine r reste constante.
attachée au point M.

On définit la base polaire mobile (e_Z, 6_5)

. . . c . =
— & est appelé vecteur radial, toujours dirigé selon le vecteur OM

— e est appelé vecteur orthoradial, toujours perpendiculaire a e, dans le sens direct

Dans ce systeme de coordonnées le vecteur position s’écrit simplement :

S
OM:re_z

Remarque : Ici, il faut noter que les vecteurs unitaires dépendent de la position du point M, et

donc dépendent du temps.
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Méthode 1: Dérivées de vecteur

Soit f(t) une fonction du temps et % (¢) un vecteur dépendant du temps :

d(f) df du

i —altia

Pour calculer la dérivée par rapport au temps des vecteurs mobiles, il faut les exprimer en

coordonnées cartésiennes :
N cos 6 N sin 6
e =1 . eh =
sin 0 —cos 0

Les vecteurs de la base cartésienne (e_x),e—y)) ne dépendent pas du temps, on peut simplement
dériver par rapport au temps coordonnée par coordonnée.

de; —6sin(6) y deg —6 cos(0) PN
= . = 9 60 7 _— .. = —9 eT’
dt 0 cos(0) dt —6sin(0)

On en déduit le vecteur vitesse :

vV =ie +rles

Dérivons a nouveau pour obtenir le vecteur accélération :

d . dir _ de
AT
=ie; +rfeg

d .\ _drf) _,  .de}

(7“9 )— dt €9+7“9ﬂ

=ile; +rles +ro(—0e;)

En additionant et réarrangeant ces deux expressions, on obtient la formule pour 'accélération
en coordonnées polaires.

d=GF—r) e+ (2r0+r) e

Dans un probleme a trois dimensions, on introduit les coordonnées cylindriques. Le
mouvement du point M dans le plan (Oxzy) est repéré en coordonnées polaires, et on rajoute
son altitude z. Les vecteurs (e, e, ;) forment alors une base orthonormée directe.

(x,y, z) — (1, 0, 2)

La position du point M est alors repérée par :
o
OM = 7‘6_T> + ze_; = | rsinf

Les formules de changement de base cartésien/cylindrique sont :
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Figure 5 — Systeme de coordonnées cylindriques

cos sin 6 0
e, = | sin® . e =[—cosb coe=10
0 0 1

On exprime alors sans mal la vitesse et de 'accélération a partir des résultats précédents :

V(t) = e, +rbeg + iel

(t) = <r —~ r92) e+ (ré+ 2&9') e + iel

sl

1.3 Coordonnées sphériques

Le systéme de coordonnées sphériques utilise une longueur r et deux angles, généralement
appelés 0 et ¢.
(‘Ta Y, Z) — (Tv 07 ¢)

Figure 6 — Systeme de coordonnées sphériques

— r est la distance euclidienne du point M a lorigine du repére. r € [0, +00[
r=+/x2+y?+ 22
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e
— @ est 'angle que fait le vecteur OM avec l’axe vertical z. On note que 6 € [0, 7], et nous
discuterons sous peu de ce choix de domaine. 6 est appelé colatitude.

— On note H le projeté orthogonal de M sur le plan (Ozy), et ¢ est défini comme l'angle
que fait le vecteur OH avec l’axe des x. On a ¢ € [0, 27[. ¢ est appelée longitude.

Remarque : Si 0 variait de 0 a 27, un point d’une sphére de rayon r pourrait étre décrit par deux
jeux de coordonnées distincts : (1, 0, ¢) et (r, 2r — 0, ¢ £ 7).

Pour garantir l'unicité des coordonnées, on restreint le domaine de 6 a [0, 7|!

Un point M(x,y, z) (en coordonnées cartésiennes) est repéré en coordonnées sphériques par :

T rsin 6 cos ¢
OM =re; = y | = | rsinfsin¢
z r cos 0

Comme pour la base cylindrique, les vecteurs de la base sphérique dépendent de la position.
Les formules de changement de base cartésien/sphérique sont :

sin @ cos ¢ cos fsin ¢ —sin ¢
el = sin @ sin ¢ e = cos fsin ¢ ; @t: cos ¢
cos 6 —sinf 0

Exprimons finalement la vitesse dans ce systeme de coordonnées :

—
dOM . .
7(75) = 7Odt =je, + rfep + rsin 9¢6_>¢

On donne également l'accélération :

ar =i —rf* — rd)Q sin? Bag = r0 + 210 — rqﬁz sin 6 cos flay = rdﬂ sin 6 + 27“450. cosf + 27'“@1') sin 6

1.4 Quelques mouvements particuliers

Définition 6 : Mouvement uniforme

Un mouvement est dit uniforme lorsque la norme du vecteur vitesse est constante.

Remarque : attention, cela n’implique pas que l’accélération est nulle car la direction du
vecteur vitesse peut varier au cours du temps tant que sa norme reste constante.
Remarque : On peut calculer la dérivée temporelle de la norme de la vitesse :

div|| _7-a
||V

Cette identité nous apprend qu’un mouvement uniforme est équivalent a un mouvement ou le
vecteur vitesse et le vecteur accélération sont orthogonaux.

Définition 7 : Mouvement rectiligne

Un mouvement est dit rectiligne lorsqu’il s’effectue le long d’une droite. Au cours d’un
mouvement rectiligne, le vecteur vitesse o conserve sa direction. Un vecteur directeur
de cette droite est le vecteur vitesse de M.
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Mouvement rectiligne uniforme La direction et la norme du vecteur vitesse sont constantes,
le vecteur vitesse lui-méme est alors complétement indépendant du temps. On note : ¥ (t) =
7 (t =0) = u). Dans ce cas, les équations horaires du mouvement sont :

x(t) = x(t = 0) + vout
y(t) = y(t = 0) + voyt
2(t) = 2(t = 0) + vo.t

Mouvement rectiligne uniformément accéléré On parle de mouvement rectiligne uniformé-
ment accéléré lorsque ’accélération est constante sur la durée du mouvement. On note :
SN 0 — =
a(t)="d({t=0)=apb
z(t) = z(t = 0) + @(t = 0)t + aozg
y(t) = y(t = 0) + (¢ = )t + ao
2(t) = 2(t = 0) + 2(t = 0)t + ap. 5

Définition 8 : Mouvement circulaire

Un mouvement est dit circulaire lorsqu’il s’effectue le long d’un cercle de centre O. Le
Ao , . 2 v —

vecteur position s’exprime donc, en coordonnées polaire OM = Re, avec R le rayon du

cercle, fixe.

Au cours d’un mouvement circulaire, le vecteur vitesse o est par définition tangent au

cercle, il est donc orthoradial : ¥ = Rfej.

Mouvement circulaire uniforme Le mouvement s’effectue le long d’un cercle, a norme du
vecteur vitesse constante. Le repere le plus adapté pour décrire ce mouvement est le repére
polaire, car la vitesse peut alors orientée selon la direction orthoradiale, et le rayon R = ||O—]\>4]|
est une constante du mouvement. On note : § = w la vitesse angulaire de rotation, qui est elle
aussi constante. En utilisant les formules démontrées précédemment pour les coordonnées
polaires, on a :

Y = rweg
q = —rw’e;

2 Les lois de la dynamique

Nous avons maintenant les outils nécessaires pour décrire le mouvement d’un systeme
mécanique. Dans cette section, on introduit entre autres la notion de force, c’est-a-dire
lorigine du mouvement. On cherche a décrire 'effet de ces forces sur un systeme physique
pour en prédire la trajectoire, a travers les lois de la dynamique.

On notera que, pour rester dans le cadre de la mécanique classique, il faut respecter certaines
conditions :

— on néglige les effets relativistes : v < ¢ ou ¢ est la vitesse de la lumiére dans le vide.

— on néglige les effets quantiques : la taille caractéristique du systéme doit étre grande
devant la longueur d’onde de De Broglie (prononcée "De Breuille") : I > A\qg = h/(mv) ou h
est la constante de Planck.
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-
N‘T

Figure 7 — Direction des vecteurs vitesse et accélération lors d’'un mouvement circulaire
uniforme de rayon r

Méthode 2 : Sur la définition d’un systéme d’étude

La premiere chose a faire avant résolution de tout probleme (et c’est valable en général
en physique), est de définir le (ou les) systeme(s) étudié(s).

Si lors des premiéres applications de la mécanique, le systeme d’étude apparait comme
évident, il est néanmoins essentiel de prendre U’habitude de le définir formellement en
préambule. Une fois ce réflexe acquis, il devient bien plus aisé d’étudier des systémes
complexes. Nous avons précédemment abordé la notion de systeme physique : en mécanique,
le systeme le plus fondamental est celui du point matériel.

2.1 Le point matériel

Définition 9 : Point matériel

On appelle point matériel ou masse ponctuelle un systéeme mécanique qui peut étre
modélisé par un point géométrique M associé une masse m, et qui peut étre décrit
complétement par 3 coordonnées de ’espace au plus.

Exemples de points matériels :

— Un palet en mouvement rectiligne uniforme le long d’une axe (Ox) nécessite une seule
coordonnée z.

— Le mouvement boule de pétanque lors d’un tir peut étre décrit a l’aide de trois coordon-
nées (z,y, z).

Exemples de non-points matériels

— Pour décrire un objet comme un javelot, il faut rajouter deux angles pour lUorientation de
la pointe : (m,z,y, z,a, ).

— Deux masses attachées par un ressort
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Dans les faits, un méme objet peut étre considéré comme un point matériel ou non, selon
le niveau de description que 'on cherche a atteindre. Si on s’intéresse a la chute d’une tartine
de confiture, trois coordonnées spatiales suffisent pour estimer son temps de chute. Si on
souhaite de plus prédire le coté sur lequel la tartine atterrira, il est nécessaire de connaitre
également son orientation dans ’espace au cours du temps. Les trois coordonnées ne sont
donc plus suffisantes et on sort du cadre du point matériel.

2.2 Reéférentiels

Le concept de référentiel est intuitif, et peut étre illustré par une situation simple : A est
dans un train qui se déplace par rapport au quai. Pour B qui est aussi dans le train, A est
immobile. Pour C' qui est sur le quai, A se déplace avec la méme vitesse que le train.

Propriété 2 :

La vitesse et l'accélération dépendent du référentiel R d’observation du mouvement.
Une notation rigoureuse pour exprimer le vecteur vitesse ou l'accélération du point M
dans le référentiel R est alors :

Y(M,R) , d(M,R)

X

Figure 8 — Schéma de deux référentiels quelconques

Définition 10 : Référentiel

Un référentiel est un solide indéformable (un ensemble de points fixes entre eux) par
rapport auquel on repere une position ou un mouvement. Il est muni de trois axes et
d’une horloge, c’est a dire une mesure du temps.

La figure 8 représente deux systemes d’axes distincts, chacun "ancré" dans un solide. En
réalité, il n’y a pas besoin de solide matériel pour définir un référentiel, mais cette définition
est commode car il apparait naturellement que deux référentiels en mouvement l'un par
rapport a autre peuvent se déplacer en se translatant et/ou en tournant 'un par rapport a
lautre.
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Exemples :

— Référentiel terrestre Ry : il est centré en un point de la terre et ses trois axes sont liés
au globe terrestre.
C’est le référentiel le plus naturel d’utilisation a notre échelle pour décrire par exemple
la trajectoire d’une tartine.
Les axes du référentiel terrestre suivent le mouvement de rotation de la Terre, Rt tourne
donc autour du référentiel géocentrique |

— Référentiel géocentrique Ry : c’est un référentiel dont lorigine est le centre de la Terre
et dont les 3 axes pointent vers des étoiles lointaines considérées comme fixes.
C’est le référentiel de choix pour étudier le mouvement des satellites de la Terre.
Les axes du référentiel terrestre suivent le mouvement de révolution de la Terre autour
du Soleil, Rs tourne donc autour du référentiel héliocentrique |

— Référentiel héliocentrique Ry, ou de Kepler : c’est un référentiel centré sur le centre du
Soleil et dont les trois axes pointent vers des étoiles lointaines. C’est le référentiel de
choix pour étudier le mouvement des satellites du Soleil, comme les planetes du systéme
solaire (Voir le cours "Mécanique céleste et champs").

Il est important de noter que pour étudier une situation physique donnée, on définit un systeme
de coordonnées pertinent apres avoir précisé le référentiel d’étude. Pour un méme référentiel,
on peut choisir d’utiliser différents systémes de coordonnées.

Remarque : On peut constater qu’il existe une infinité de référentiels possibles. Parmi tous ces
référentiels, on distingue parmi eux une catégorie de référentiels particuliers qu’on appelle les
référentiels galiléens, dans lesquels les lois de le physique sont plus simples, comme nous le
verrons trés vite.

2.3 Quantité de mouvement
Définition 11 : La quantité de mouvement

La quantité de mouvement d’un point matériel M est définie comme le produit de sa
vitesse instantanée et de sa masse :

P =my

Remarque :

— La quantité de mouvement est une grandeur additive, ainsi pour un ensemble de N points
matériels :

N N
?total = Z 72 = Z mg 71
1=1 =1

— Tout comme la vitesse, la quantité de mouvement est une grandeur qui dépend du point
matériel M considéré et du référentiel R d’étude : la vitesse d’une mouche dans un train
ne sera pas la méme si 'observateur est dans le train ou sur le quai.
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2.4 1°° loi de Newton : principe d’inertie
Définition 12 : Systéme isolé, systéeme pseudo-isolé

— Un systeme mécanique est dit isolé lorsqu’il ne subit aucune force extérieure.

— Un systéeme mécanique est dit pseudo-isolé si les forces extérieures qu’il subit se
compensent.

Exemples :
— Un astronaute dans U'espace et infiniment loin de tout astre peut étre considéré comme
un systeme isolé.

— Une tasse sur une table est immobile car son poids est compensé par le support solide.
Nous définirons rigoureusement le poids et cette réaction du support par la suite.

Propriété 3 : Principe d’inertie

Il existe des référentiels privilégiés, dits galiléens ou inertiels dans lesquels un point
matériel isolé ou pseudo-isolé est soit immobile, soit en mouvement rectiligne uniforme.

Remarque :
— Sans force, il N’y a pas de modification du mouvement.
— Ce principe suppose ’existence d’un référentiel privilégié (référentiel galiléen), dont il
donne la définition.

Propriété 4 :

Tout référentiel en translation rectiligne uniforme par rapport a un référentiel galiléen
est un référentiel galiléen.

Exemple : Si le référentiel terrestre est considéré comme galiléen, alors le référentiel associé
a un train qui se déplace sur une ligne droite a vitesse v constante est lui aussi galiléen.

Propriété 5 :

Tout référentiel n’étant pas en translation uniforme par rapport a un référentiel galiléen
n’est pas un référentiel galiléen.

Cela inclue les référentiels en translation accélérée, en rotation, ou méme un mélange des deux.
Par exemple référentiel terrestre R est en rotation par rapport au référentiel héliocentrique
Rir.

On constate alors que, si le référentiel géocentrique Ry est considéré galiléen, alors le réfé-
rentiel terrestre Ry qui est en rotation par rapport a R¢g, ne peut pas étre galiléen. Disons
cependant que l'on étudie un phénomene physique a la surface de la terre, dont la durée est
trés inférieure a un jour terrestre, et qui a lieu sur une étendue spatiale tres inférieure au rayon
terrestre. On peut se convaincre que dans ce cadre, le mouvement de Ry par rapport a Rg
est presque une translation rectiligne uniforme, (voir figure 9) et ainsi Ry peut étre considéré
galiléen pour U’expérience considérée.
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Figure 9 — Déplacement du référentiel terrestre par rapport au référentiel terrestre sur une
petite échelle de temps et d’espace

Méthode 3 : Sur la définition d’un référentiel d’étude

La seconde chose a faire avant résolution de tout probléme de mécanique est de définir
le référentiel dans lequel on étudie le mouvement. On précise également si le référentiel
est considéré comme galiléen ou non.

2.5 2°™¢ loi de Newton : principe fondamental de la dynamique
Propriété 6 : Principe fondamental de la dynamique

Dans un référentiel galiléen, la dérivée temporelle de la quantité de mouvement est
égale a la résultante 7 des forces s’exergant sur ce point :

dp
L —md =¥

Remarque :

— Ce principe fondamental relie les forces qui sont des grandeurs dynamiques (les causes),
et l'accélération, qui est une grandeur cinématique (la conséquence).

— Cette équation permet également d’interpréter la masse m comme une quantité qui
s’oppose a la modification du mouvement du corps. Plus m est grande, plus la force
requise pour modifier ’accélération du corps est importante.

dp —

— On notera que = md est vérifié uniquement lorsque le systéme (ici un point matériel

M a une masse m constante. Si la masse de M diminue au cours du temps (par exemple
dans le cas d’une fusée qui éjecte de la matiere), alors un terme supplémentaire apprait
dans ’équation du mouvement.
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2.6 3°™¢ loi de Newton : principe des actions réciproques
Propriété 7 : Principe d’action-réaction

Soit un corps A exergant une force 7,4_)3 sur un corps B.

— A subit de la part de B une force 7B_>A, de méme norme, de méme direction et de
sens opposé.

?B*)A = _714—)3

— 7,4_,3 et 7B_>A sont portées par la droite (AB)

? B,mp
A—B
%
fB>a ‘/.
A my
®

Figure 10 - Principe d’action-réaction

2.7 Quelques forces courantes

Maintenant que les lois sont posées, nous allons creuser dans le détail des forces couram-
ment rencontrées en mécanique. L’'inventaire qui suit n’a pas pour vocation d’étre exhaustif :
certaines forces cheres a la mécanique des fluides comme les forces de pression et la poussée
d’Archimeéde sont laissées de c6té, tout comme certains exemples qui largement plus détaillés
dans le cadre d’un cours sur l'oscillateur harmonique (systéemes massse-ressort).

2.7.1 Interaction gravitationnelle

L’interaction gravitationnelle décrit 'attraction entre deux corps massiques. Il s’agit d’une
force qui agit a distance (elle ne nécessite pas de contacts). C’est cette force qui décrit le
mouvement des planetes dans le systéeme solaire par exemple.

Soit deux corps A et B, respectivement de masse mpa et mg, et de position ﬁ et O_B> Oon
note r = ||OA — OB|| = ||AB|| la distance qui les sépare. La force que A exerce sur B est :

T s = —GTEIERG - _mams AB

2 ||AB|

2.7.2 Champ de pesanteur et poids

On appelle champ de pesanteur le champ attractif qui s’exerce sur les corps massiques.
Ce champ, noté ¢ est un champ homogéne a une accélération, c’est pourquoi on lui donne
aussi le nom d’accélération de la pesanteur. Le champ de pesanteur d’'une planéte comme la
Terre provient principalement de la gravité, et il est dirigé vers le centre de la Terre.

On appelle poids la force de pesanteur associée a ce champ. Dans le référentiel terrestre,
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? B,mp
A—B
_>
fB4x4 ‘////////.
A,my
o

Figure 11 — Force d’interaction gravitionnelle

on la considére souvent comme étant dirigée "vers le bas" : c’est la force qui fait tomber les
pommes des pommiers. Soit un objet de masse m, le poids a pour expression :

P=myg

On retiendra la valeur numérique approchée de la norme de l’accélération de la pesanteur :
g~9.81 ms2

Objet en chute libre :

Z 4 ?l

e M
P

O X
Figure 12 — Chute libre d’un corps de masse m

Un objet est dit en chute libre lorsqu’il n’est soumis qu’a son propre poids. Etudions ce
mouvement élémentaire dans un premier exemple d’application du principe fondamental de la
dynamique :

On étudie un point matériel M de masse m, en chute libre dans le référentiel terresre R,
supposé galiléen. On munit 'espace d’un systéeme de coordonnées cartésiennes en notant (Oz)
l'axe vertical ascendant. La force de pensanteur est dirigée selon le vecteur —¢.. D’aprés le
principe fondamental de la dynamique (PFD) :

mx =0
my =0
mzZ = —mg

En supposant gqu’initialement M était completement immobile, son mouvement est un
mouvement rectiligne uniformément accéléré purement vertical. On peut donc se priver des
deux premieres équations qui concernent le mouvement de M selon les axes (Ox) et (Oy). On
remarque également que les masses se simplifient dans la troisieme équation : le mouvement
ne dépend pas de la masse de l'objet. En intégrant l’équation selon (Oz), on obtient :

Z(t) = —gt + C4
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Appligquons les conditions initiales pour éliminer la constante d’intégration :
0=v,(t=0)=2(t=0)=—-gx0+Cy =C
Intégrons a nouveau l’équation pour obtenir ’équation horaire de M :

.2
z(t) = 95 + (o

En supposant gu’initialement M était a Ualtitude H :

H=z(t=0)=0C

Finalement :

/2
z(t)=H — 95

On peut en déduire le temps 7 qu’il faut a M pour atteindre le sol en z = 0, et la vitesse v,
qu’aura M au niveau du sol :

Tir balistique sans frottement :

%
Z A
9

v

O X
Figure 13 — Tir balistique d’un objet de masse m

Reprenons la situation précédente, mais avec des conditions initales différentes : M,
initialement a Uorigine O du repeére, est lancé avec un vecteur vitesse 2§ de norme v, contenu
dans le plan (Ozz), faisant un angle a avec l'axe (Ox). Le PFD s’écrit comme précédemment :

mz =0
mzZ = —mg
Ce qui donne apres intégration :

& = C1 = vg cos(a)
Z2=—gt+ Cy = —gt + vgsin(«)

D’ou les équations horaires :
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x(t) = vg cos(a)t
.2
z(t) = ) + vosin(a)t

On détermine alors la trajectoire de M en exprimant par exemple z en fonction de x :

o(z) = —g (x(a)f + v sin(a)——

Vg COS vp cos(a)
g 2
= —————=12" + tan(o)x
20} cos(a)? (@)
La trajectoire est donc une parabole. On peut a présent définir des quantités remarquable du
mouvement de M.

— La distance horizontale que parcoure M avant de toucher le sol, appelée la portée. On
notera ses coordonnées (z,,0).

— Le point de plus haute altitude, appelé la fléeche. On notera ses coordonnées (zy, zy).

Commengons par la portée. Il suffit de résoudre ’équation z(z) = 0 pour z > 0. On obtient
rapidement :

v3 v3
z, = —22sin(a) cos(a) = 2 sin(2a)

g g

L’angle a qui maximise la portée est a = % = 45°.

Passons maintenant a la fleche, lorsque M atteint son apogée. Le maximum de la parabole
vérifie ’équation suivante :

Finalement,

9

2 vy . 2, Yo . 2 Uy . 2
x4 + tan(a)rr = —— sin(a)” + — sin(a)” = — sin(«

zp = 2(zp) = =

2.7.3 Frottements fluides

Lorsqu’un objet se déplace dans un fluide liquide ou gazeux, il regoit une force qui s’oppose
en général a son déplacement. Celle-ci a pour origine la viscosité du fluide, qui résiste a son
écoulement. En fonction de la vitesse a laquelle 'objet se déplace dans le fluide, cette force
peut s’exprimer de plusieurs manieres : a "faible" vitesse, la norme de la force de frottement
sera proportionnelle au vecteur vitesse tandis qu’a "hautes" vitesses, la norme de la force sera
quadratique en la vitesse.

Remarques:

— Le changement de régime linéaire -> quadratrique est important a avoir en téte lorsqu’on
conduit : en effet, au-dela d’une certaine vitesse, les frottements deviennent trop
important et la consommation énergétique de la voiture n’est pas optimale.
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— Le vecteur vitesse qui intervient est ici le vecteur vitesse relative du point matériel M par
rapport au fluide qui s’écoule avec le vecteur vitesse ¥ (fluide/R).

V(M fluide) = 0 (M/R) — ¥ (fluide/R)

ﬁ
—4— >

@

Figure 14 - Force de frottements fluides sur une sphere

Dans cas des frottements linéaires, on peut par exemple exprimer la force de frottements
fluides qui s’exerce sur une sphere de rayon R, dans un fluide de viscosité 5, dite force de
Stokes :

?fmtt = —67T7]R7(M/fluide)

Chute avec frottements fluides linéaires :

Reprenons le cas de la chute libre d’un point matériel M de masse m, qui n’est plus tout a fait
libre puisque l'on prend maintenant en considération les frottements de l'air. Lorsque lair est
au repos (pas de vents violents), le PFD donne dans la direction verticale :

. : A
mi=—-mg—A & U,+—v,=—g

m
A est un coefficient qui contréle Uintensité de la force de frottement. On obtient alors une
équation différentielle linéaire a coefficients constants du premier ordre en la vitesse verticale
v,, avec un second membre constant. Plutét que de se jeter sur la résolution, prenons le temps
d’en extraire des informations intéressantes :

— On remarque que la quantité 7 = — est homogéne a un temps, c’est le temps caractéris-
tique d’évolution de la vitesse du point M.

— Voici l’évolution que prédit ’équation : supposons qu’initialement M soit au repos. Alors
M accélére vers le bas sous U'effet de la pesanteur. Cependant, contrairement a une chute
libre, les frottements s’opposent a cette accélération, et cette opposition est d’autant
plus forte que la vitesse grandit. Ainsi, au bout d’un temps de l'ordre de quelques 7, la
pesanteur et les frottements fluides se compensent, et le point M est quasiment en
mouvement rectiligne uniforme (v, ~ 0).

— On en déduit alors la vitesse terminale du mouvement, qui est aussi la vitesse maximale
que M peut atteindre :

Vz,00 = —9T

Résolvons tout de méme proprement l’équation, qui est linéaire, du premier ordre en v,, a
coefficients constants et avec un second membre constant. On cherche la solution générale
sous la forme : v, = vy + vp avec vy la solution de l’équation homogee (c.a.d sans second
membre) et vp une solution particuliere.
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) . . 4t
— L’équation sans second membre admet les solutions vy = Ae™ -

— Comme le second membre est constant, on peut raisonnablement chercher un solution
particuliere constante. Hors, nous en avons déja trouvé une : vy

Finalement v, = Ae 7 + Voo, @vec la condition initiale v,(t =0) =0,

t

V(t) = voo(l —€e™ 7)

Nous avons bien v,(t) L Voos et on peut de plus interpréter le temps caractéristique 7. En
—00

utilisant 1 —e™* ~ =z, on obtient :
z—0

t
V(L ~ 0) ~ v0o— = gt
T

A temps courts devant 7, on retrouve la vitesse de la chute libre. Ainsi, 7 est le temps
a partir duquel les frottement font leur effet sur le systéme, qui ne peut alors plus étre
considéré comme en chute libre.
Chute avec frottements fluides quadratiques :

Dans le cas des frottements fluides quadratiques, la force est de la forme :

7 srott = —pl| T (M/ fluide) || ¥ (M fluide)

Reprenons (encore) un point matériel M initialement immobile laché dans de l’air au repos.
Cette fois-ci :
mzZ = —mg — pz|z|

En suivant le méme raisonnement que précédemment, on peut déterminer la vitesse aux
temps longs sans avoir a résoudre ’équation différentielle :

mg

“

Vz00 =

Comment séparer les deux situations ?

Pour estimer la situation dans laquelle on se trouve, il est nécessaire de comparer la vitesse
du point M a une vitesse limite qui sépare les deux régimes. Pour cela, on introduit le nombre
de Reynolds Re, qui e st un nombre sans dimension défini en fonction de la vitesse v du point
M par rapport au fluide, la viscosité dynamique n du fluide et sa masse volumique p, ainsi que
la longueur caractéristique L de l'objet M.

Re = @ S Ve = /N
no e Lp
Les frottements seront linéaires (respectivement quadratiques) lorsque Re << 1 (respective-
ment Re >> 1) ou bien v << v, (respectivement v >> v.).

2.7.4 Réaction d’un support et lois de Coulomb

On définit naturellement la réaction normale d’un support solide qui traduit le fait que
la plupart du temps, les objets solides ne se s’interpénetrent pas (un livre ne traverse pas
la table sur laquelle il est posé). Dans ce cas particulier, la réaction normale de la table
compense exactement le poids du livre. Contrairement a de nombreuses forces précédemment
introduites, cette force n’a pas d’expression systématiquement, c’est ce qu’on appelle une
force de liaison. C’est ’équilibre des forces dans le principe fondamental de la dynamique qui
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permet d’en déterminer une expression explicite.

Prenons un autre exemple, ou un palet glisse sans frottement sur un plan lisse, incliné d’un
angle « avec ’horizontale. On choisit de prendre l’axe = paralléle au plan de glisse. La réaction
normale, notée R—N> est choisie sur laxe z : Ry = Ryey

Figure 15 — Glissement sans frottement d’un palet sur un plan incliné

md = mgsin(«)
0= —mgcos(a) + Ry
On en déduit que le mouvement du palet est un mouvement rectiligne uniformément
accelere selon z, et la reaction normale : Ry = mg cos(a).

Bien sur, si le plan sur lequel est posé le palet présente une surface rugueuse, on observe
des frottements solides. Ces derniers se traduisent par une force de frottement appelée
réaction tangentielle. Comme son nom lindique, elle est toujours tangentielle au support et
s’oppose au déplacement du mobile. On choisit de noter ici }?T = —Rre,. Expérimentalement,
on observe que si le plan est assez incliné, alors le palet continue de glisser en dépit des
frottements. On parle alors de frottement dynamique, ou de glissement avec frottement. La
loi de Coulomb sur le glissement avec frottement stipule :

— —
|Rr|| = fall Rl
avec f; appelé coefficient de frottement dynamique, qui est souvent de l'ordre de l'unité ou
du dixiéme de lunité.
Reprenons ’exemple du palet :

m& = mgsin(a) — Rp Ry = mgcos(a)
0=—mgcos(a) + Ry Ry = fgm gcos(a)
Rr = faRn mZ = mg (sin(a) — fqcos(a))

On remarque ici que U’hypothése selon laquelle M continue a glisser n’est valide que
si sin(a) > fycos(a), soit a > arctan(fy). Il existe donc un angle critique a partir duquel les
frottement solides figent le mobile. Si on diminue progressivement Uinclinaison du plan, la
palet finira donc par s’arréter lorsque « = arctan(fy).

Prenons maintenant le protocole inverse : on commence avec a = 0, et on augmente
progressivement linclinaison du plan. Au début le mobile ne bouge pas, puis il commence
a glisser pour un angle critique a. bizarrement supérieur a celui obtenu précédemment...
Introduisons le frottement statique, ou le non-glissement sans frottements. Ici, le palet est

21/37



O Physicité IPhO : Mécanique

immobile. Il existe également une loi de Coulomb pour cette situation, qui n’est plus une
égalité mais une inégalité :

> —
|Rr|| < fsl| RNl

avec fs appelé coefficient de frottement statique.

Des lors que linégalité de la loi de Coulomb n’est plus vérifiée, c’est-a-dire lorsque
a > arctan(fs), le palet se met a glisser et on retombe dans le cas des frottements dynamiques.
On a dans la plupart des cas f; > f; : il est souvent plus difficile d’initier le mouvement que de
U’entretenir.

Ry

Figure 16 - Frottements dynamiques Figure 17 - Frottements statiques

2.7.5 Tension d’un fil

Il s’agit d’une force difficile a définir, mais intuitive a apprréhender. Tout comme le livre ne
traverse pas la table sur laquelle il est posé, une masse suspendue au bout d’un fil ne tombera
pas malgré la gravité qui s’exerce sur elle, car le fil la retient. C’est cette réalité physique que
la force de tension permet de traduire. Usuellement notée 7, c’est aussi une force de liaison,
ce qui veut dire que bien qu’il n’existe pas de formule générale, on peut déterminer la tension
du fil en équilibrant les forces s’exergant sur le systéme. Une chose que l'on peut néanmoins
noter, c’est que cette force est toujours orientée dans la direction du fil, si tenté que celui-ci
soit effectivement tendu.

Quelqu’un a dit pendule simple ?

M
T

Figure 18 — Illustration de la tension d’un fil

Pendule simple :
Comme son nom le suggere, c’est le systeme mécanique le plus simple faisant intervenir une
force de tension. Cet exemple est d’autant plus intéressant qu’il nous permet de manipuler
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pour la premiere fois les coordonnées polaires.
On étudie un point matériel M de masse m, en mouvement dans le référentiel terresre Ry,
supposé galiléen. On munit 'espace d’un systeme de coordonnées polaires. M se balance au
bout d’un fil sans masse que 'on suppose tendu a tout instant, de longueur [. M est alors en
mouvement circulaire de rayon [ (ce qui simplifie grandement ’expression de ['accélération
car 7 = 0).
Les forces qui s’appliquent au point M sont :
— Son poids : P = mg(cos(0) e, — sin(h)eg)
— La tension du fil : 7 = —T%e, dont 'expression est a déterminer
Appliquons le PFD : .
—mlf? = mgsin(d) — T
mlf = —mgsin(0)
Intéressons-nous d’abord a la seconde équation, qui détermine le mouvement du point M. On
peut la réécrire sous la jolie forme suivante :

é+w§sin(9):0 wozﬁ

Cette équation porte le doux nom d’équation du pendule simple. Nous n’allons évidemment
pas la résoudre telle quelle, mais plutét étudier le cas limite des petites oscillations autour
de la situation d’équilibre # = 0. On donne que pour 6 << 1rad, sin(d) ~ §. Dans ce cas, on est
ramenés a [’équation différentielle de l'oscillateur harmonique non-amorti (voir le cours sur
Uoscillateur harmonique) :

4+ wi0=0

f e s . 2
Le mouvement du pendule est périodique, de période T = i 27r\/§.
wo

2.7.6 Loi de Hooke

La loi de Hooke décrit le comportement d’un ressort : elle permet d’exprimer la force d’un
ressort, ou force élastique ?él

Ou k est la raideur du ressort, et [, sa longueur a vide. [ est I'élongation du ressort. i est
un vecteur unitaire qui pointe toujours dans le sens d’étirement du ressort.

Fo=—k(l—1lo)d

. (k, 1) A ? (k, o) A
él

- —
U u

Figure 19 — Force de rappel d’un ressort en

) Figure 20 — Force de rappel d’un ressort en
extension

compression

La résolution de systéemes masse/ressort sera abordé plus précisément lors du cours sur
les oscillateurs harmoniques.
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2.7.7 Interaction Coulombienne

L’interaction Coulombienne décrit 'attraction ou la répulsion entre deux corps possédant
une charge électrique. Il s’agit d’une force qui agit a distance (elle ne nécessite pas de contacts)
et elle est similaire a Uinteraction gravitationnelle a de nombreux égards.

Soit deux corps A et B, respectivement de charges ga et gg, et de position Oj et O? on

note r = ||OA — OB|| = ||AB|| la distance qui les sépare. La force que A exerce sur B est :
?A _ _4ndB pg _ MaTB ﬁ
7B dregr’ degr? H@H

Une remarque d’importance est que linteraction gravitationnelle est toujours négligeable
devant linteraction Coulombienne. Ansi, lors de I’étude de mouvements de particules chargées
comme des électrons, Uinteraction gravitationnelle sera completement laissée de coté.

2.7.8 Force de Lorentz

La force de Lorentz est la force qu’un champ électromagnétique exerce sur un objet chargé
(i.e. porteur d’une charge électrique). En notant ¢ la charge de l'objet, ¥ sa vitesse, EZ et
décrivent respectivement les champs électrique et magnétique. On a :

F-q(B+713)

—
_ = Fr
€ E
+“—O
— _
FL € .—_>>
v

Figure 21 - Force de Lorentz en présence Figure 22 - Force de Lorentz en présence
d’un champ électrique d’'un champ magnétique

Le symbole A représente un produit vectoriel entre deux vecteurs :

Az by ayb. — a.by
Gy | N by = a,by — azb,
a, b, azby — ayby
Pour manipuler plus facilement le produit vectoriel, on peut retenir ces 3 régles :
— le produit vectoriel est antisymeétrique : AANb =—b AW
— dANT=0
— - =
— (dAb)-d=(dAb)-b=0
— @ Ney=¢ ; ey ANel=¢e ; ENes=¢

Les figures 21 and 22 montrent les trajectoires typiques d’un électron (de charge —e¢) en
présence d’'un champ électrique seul, et en présence d’'un champ magnétique seul. Pour un
champ électrique constant et homogene, la force de lorentz s’écrit simplement F;, = —e¢
le mouvement est rectiligne uniformément accéléré. On peut montrer que dans le cas d’un
représenté en figure 22, avec B un champ magnétique constant et homogene, le mouvement
de l’électron est circulaire uniforme.
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Champ électrique seul :

Choisissons E — Fe,. La composante sur 'axe des z de force de Lorentz a laquelle est soumise
Uélectron est alors F,, = —eFE. Cette force est constante et uniforme, et complétement analogue
au poids dans le référentiel terrestre. Le mouvement de l’électron sur ’axe des x est sans
plus de calculs un mouvement uniformément accéléré dans la direction des = décroissants.

Champ magnétique seul :

Choisissons 3 = Be_;, et calculons le produit vectoriel :

F, Vg 0 yB
Fy, = —el|lv |A|DO = —e|—zB
F, (3 B 0

D’ou les équations couplées du mouvement, ou nous identifions w. = % a une pulsation

caractéristique appelée ’pulsation cyclotron’ :
mx = —eBy T+ wey =0
. . = . .
miy = eBx Y —wex =0

Remarquons que l'on peut simplement intégrer les deux équation par rapport au temps. Nous
introduisons les conditions initiales 7(75 =0)= voes (vitesse initiale perpendiculaire au champ

L —
magnétique), OM (t = 0) = 0.
T+ wey = 1o
Y —wer =0

Dérivons la premiére équation par rapport au temps, et injectons la deuxieme :

Y = Wek

Finalement, ’équation découplée sur = a pour solutions :

a(t) = Ae™e! + Be ™! x(t) = i sin(wt)
0=2(0)=A+B = we
vo = (0) = iwe(A — B) y(t) = —(1 — cos(wet))

Finalement, la trajectoire de l’électron est un cercle contenu dans le plan (Ozy), de centre
Uo

(0, R) et de rayon R = o

Remarquons que si lon avait choisi une vitesse inititale parallele au champ magnétique, la
force de Lorentz aurait été strictement nulle, et 'électron aurait été en mouvement rectiligne
uniforme sur l’axe des z. Ainsi, en prenant un vecteur vitesse initial quelconque, le mouvement
complet de M est la combinaison de

— Un mouvement rectiligne uniforme sur 'axe (Oz)
— Un mouvement circulaire uniforme sur le plan (Ozyz)

Ce mouvement en ’tire-bouchon’ est appelé mouvement hélicoidal.
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3 Considérations énergétiques

3.1 Puissance d’une force

Définition 13 : Puissance d’une force

On définit la puissance de la force 7 s’appliquant sur le point M de vitesse instantanée

7
P(7)=TF -7

Remarque :

— Tout comme la vitesse, la puissance est une grandeur qui dépend du point matériel M
considéré et du référentiel R d’étude, bien que cela soit souvent omis dans la notation.

3.1.1 Caractére moteur ou résistant d’une force

— On dit qu’une force est motrice si 73(7) > 0.
— On dit qu’une force est résistante si 7?(7) < 0.
— On dit qu’une force ne travaille pas si 77(?) =0.

Exemples de puissances de forces :

.. - . ;.
— Force de frottements linéaire : P(frron) = —Xv?, la force est toujours résistante

. . = B . .

— Force réaction normale : P(Ry) = N . ¥ = 0 car la réaction normale est normale a la
trajectoire. Ainsi, peut importe la forme de la surface, tant que ladite surface est immobile,
la réaction normale ne travaille pas. Il en va de méme pour la tension d’un fil tendu.

— Poids : P(?) = —Mgu,.

— Composante magnétique de la force de Lorentz : on sait que ¥ A B 1 U par propriété du
produit vectoriel, donc la puissance est nulle, cette force ne travaille pas. Comme nous
’avons vu, elle ne peut que modifier la trajectoire du point matériel.

3.2 Travail d’une force
3.2.1 Vecteur déplacement élémentaire

Oon consi_glére un point matériel M en déplacement. On appelle déplacement élémentaire
le vecteur dr(t) qui fait passer M de sa position a l'instant ¢ a sa position a Uinstant ¢ + dt.
Autrement dit, dr(t) dirige la droite tangente a la trajectoire de M a linstant ¢.

=3

dr
/ M(t)

M(t + dt)

_|_

Figure 23 - Vecteur déplacement élémentaire d’un point matériel M
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Définition 14 : Déplacement élémentaire

Le vecteur déplacement élémentaire est colinéaire au vecteur vitesse, et on a la relation :
%
dr(t) = U (t)dt
. . -
Si le mouvement de M est rectriligne d’axe (Om)_p))ar exemple, on a dr = dze,.
Pour un mouvement circulaire de rayon R, on a dr = Rd@e_g.

Définition 15 : Travail élémentaire

Le travail élémentaire d’une force est défini comme suit :
_>
w(f) =7 &r=T7 @®ad)
En utilisant la relation introduite précédemment pour le déplacement élémentaire :

%
SW(f)=T7-dr="7-(@Wdt)= (7 - T(t)dt =P( ] )t
Soit un point matériel se déplagant de la position A a la position B, selon un chemin

quelconque, que l'on note I'. On définit alors Wa_,pr( f) le travail de la force ? sur le chemin
I' par la somme des travaux élémentaires sur I.

B tp
Waser(f)= [ ow= [ F-ar=[P(T)wa
F,AZB F,/A t[

Remarque :

— Les deux formes intégrales équivalentes ci-dessus peuvent toutes deux étre utilisées.
La premiere est une intégrale sur '’espace, qui ne nécessite pas de connaitre les équations

horaires du point matériel.
La seconde est une intégrale sur le temps, qui permet de calculer le travail de la force

en connaissant la vitesse du mobile au préalable.

— Le travail est homogene a une énergie : il correspond a ’énergie fournie par la force lors
de ce déplacement.

Définition 16 : Caractére moteur ou résistant d’une force

Une force est une :
— force motrice si son travail est positif : elle fournie de I’énergie au systeme.

— force résistante si son travail est négatif : elle prend de I’énergie au systéme.

Remarque :
— Une force peut étre motrice ou résistance selon la portion du mouvement étudié.

— La force de frottement est toujours une force résistance.

— La composante magnétique de la force de Lorentz ne travaille pas : son travail est nul
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Propriété 8 : Théoréme de U’Energie Cinétique

Version différentielle :

e~ p(7)

Version intégrale :
Eo(B) - Bo(A) = Wasssr(f)

On peut démontrer les deux version en faisant le produit scalaire du PFD avec la vitesse du
point M, puis intégrer pour obtenir la version intégrale :

ﬁ77 7.7

ﬁctﬁ< 7ﬁ— P(7)
| Sa= [ eha= [ ow(h)

A—B,I’ A—B,I’ A—BI
E.(B) = E(A) = Waspr(f)

Distance d’arrét sur une route rugueuse :

Considérons un véhicule apparenté a un point matériel M de masse m, en déplacement sur
une route plane d’axe (Ox), qui freine a linstant ¢ = 0. Cette route présente une surface
rugueuse qui présente des frottements solides avec le véhicule, de coefficient de frottements
dynamiques f;. La question est la suivante : si le véhicule a une vitesse vy a Uinstant initial,
quelle distance L parcoure-t-il avant de s’arréter completement? On appelle O le point de
départ et A le point d’arrét.

On cherche a appliquer le TEC, pour cela on calcule le travail de la force de frottement. D’apres
’équilibre vertical et la loi de Coulomb sur le glissement avec frottements, on a Ry = —mgfde_g,
d’ou :

A
Woar = / —mgfa)es - endr = —mgfd/dw = —mgfqL
D’apres le TEC, on a donc :

1
E.(A) — E.(O) = —mgfsL = §mv(2) mgfasl = L=

3.3 Conservation de l’énergie

Définition 17 : Forces conservatives

Une force conservative est une force dont le travail ne dépend pas du chemin suivi :
WA—>B,F1(?) = WA—>B,F2(7)

L’énergie potentielle est alors une fonction qui ne dépend que de la position.
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Figure 24 — Deux chemins sous le champ de gravitation terrestre

Exemple : Le poids est une force conservative. Si un skieur descend une piste tout droit (tout
schuss!) ou en slalomant, le travail fourni par son poids sera le méme dans les deux cas, et
correspondra a mgAh avec Ah est le dénivelé.

Définition 18 : Energie potentielle

On appelle énergie potentielle 'opposé du travail d’une force conservative : cette énergie
ne dépend que de la position, et est définie a une constante preés.

Ep(B) — Ep(A) = —Wasp

Exemple : On appelle énergie potentielle de pesanteur ’énergie associée au poids : E,,(z) = mgz

Propriété 9 : Force dérivant d’un potentiel

Une force conservative 7 est une force qui dérive d’une énergie E,, alors appelée énergie

potentielle :
7 -9z,

Pour un probleme unidimensionnel, (? = f(z)e;) retenir simplement :

7:_dEp

dx

Qu’est-ce que c’est que ce symbole ?? : Le delta inversé, plus communément appelé "nabla"
désigne, lorsqu’il est coiffé d’une fleche, 'opérateur gradient. C’est un opérateur qui prend en
argument une fonction scalaire et renvoie un vecteur. Soit une fonction de Uespace f(z,v, 2).
of -  0f—  Of
?f = %eay + Fyey + gez
Le gradient d’une fonction f est un vecteur qui indique la direction vers laquelle f augmente
le plus. En randonnée, on peut définir laltitude h(z,y) et ?h(:c,y) indique alors la direction de
la plus grand pente ascendante, au point de coordonnées (z,y).

Qu’est-ce que c’est que ce 0 bizarre ? : Il s’agit d’une dérivée partielle (on dit "d rond" pour

distinguer du "d droit"). Ces dérivées sont introduites dans le cadre des fonctions de plusieurs

variables, par exemple f fonction de trois coordonnées spatiales (z,y,z). Pour calculer la

dérivée partielle par rapport a la variable z, on fixe les variables y = yy et z = 29, et on applique
o f(xo+/;;yovzo)_

la définition classique d’une dérivée : a—i(:co, Yo, 20) = lim
h—0
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Exemple des forces conservatives :
Le poids est une force conservative :

dE
? mq = —mge; = — dppe_z> E,y(z) = mgz + Cste
2

La force de rappel d’un ressort est aussi conservative et admet pour énergie potentielle :

k
E. = §(l —1p)? + Cste
Démonstration de ’expression du travail d’une force conservatwe La relation ? ?E
peut se réécrire en terme de quantités infinitésimales 7 dr = 0W = —dEp. A partir de la, on

retrouve l’expression du travail intégral pour M se déplgcantde A a B :

Wasn(F) =~ [ dBp=-(E,(B) - Ey(4)
A—B
Armé de ces nouveaux outils, on peut alors reprendre notre démonstration du théoreme de
’énergie cinétique en séparant les forces en deux catégories, les forces conservatives (
et non conservatives (?("'C)). On introduit alors ’énergie mécanique, qui est la somme de la
partie cinétique et de la partie potentielle de U’énergie.

Définition 19 : Energie mécanique

En=E.+E,

Propriété 10 : Théoréme de Energie Mécanique

Version différentielle :

dFE
“SEm (n.c)
" _ p(F)

Version intégrale :
Ee(B) — E(4) = Was,pr(F )

‘7.7:7<c>.7+7<n.@.7

& (5m7?) = § BN+ PT )

L (Bt By =P(F )

dt
/ %dt / P(f )t = / sw (f (o))
A—B,I A—B,I A—B,I

E(B) — En(A) = Wa,pr(f )

Remarque : On comprend maintenant la terminologie des forces ‘conservatives’ : lorsqu’un
systéme n’est soumis qu’a des forces conservatives, son énergie mécanique est conservée
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dans le temps, c’est une constante du mouvement.
Hauteur maximale de lancer :

Considérons une balle apparenté a un point matériel M de masse m, lancée a la verticale
vers le haut a linstant ¢+ = 0, avec une vitesse initiale vy. Elle est alors en chute libre, et atteint
son apogée a une distance H du sol, que l'on cherche a déterminer.

Connaissant l’expression de ’énergie potentielle de pesnteur, appliquons directement le TEM :
1, v%
E.(0)+ E,(0)=E.(H)+ Ey(H) = 5y = mgH = H= 2

ou l’on a utilisé le fait qu’a 'apogée, la vitesse du point M doit s’annuler pour changer de

signe.

4 De la mécanique du point a la mécanique du solide

Nous avons insisté sur la définition du point matériel, qui est le systéme mécanique le plus
simple, et le seul systeme que nous avons étudié jusqu’a présent. Bien sdr, la mécanique ne
s’arréte pas a l'étude des points matériels mais s’étend a des sytéme plus généraux, souvent
plus complexes. A quoi ressemble un systéme plus complexe qu’un point matériel ? Deux
points matériels, par exemple. Ou bien 3, ou 42, ou encore une infinité de points matériels! A
cet égard, le point matériel n’est pas seulement une simplification, c’est la brique élémentaire
qui permet d’étudier beaucoup d’autres systéemes par union de points matériels.

Exemples :

— Deux boules reliées par un ressort

— Deux boules reliées par une tige

— Un pendule a deux segments, appelé pendule double
— Deux astres de masses comparables

Ces systémes sont bien jolis, mais lorsque le nombre de sous-systemes augmente, ils
deviennent trés, tres, trés difficiles a étudier en pratique. On peut cependant rajouter une
contrainte qui rend ’étude des unions de point matériels bien plus accessible : on se restreint
aux systémes pour lesquels la distance entre les points matériel reste constante. Cette
hypothese permet de définir la notion de solide indéformable.

Définition 20 : Solide indéformable

Assemblée de points matériels {M;};cn tel que la distance entre deux points quelconques
reste constante au cours du mouvement :

o d, —
Vi, j £1|MiMj\|:0

En effet, moyennant quelques nouvelles lois que nous allons vous introduire, il est tout a
fait possible de décrire des mouvements tels que la chute d’un arbre ou la chute d’une tartine
beurrée (oui encore elle).

Remarque importante : Rappelons qu’un point matériel est décrit par 3 coordonnées de
’espace, c’est un systeme a 3 degrés de liberté. En toute généralité, un systeme de N points
matériel en 3 dimensions posséde alors 3N degrés de liberté. Le solide indéformable, avec
sa propriété extraordinaire, présente au maximum 6 degrés de liberté (3 en translation, 3
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en rotation). Le mouvement d’un solide indéformable se décompose en un mouvement de
translation global et d’un mouvement de rotation, appelé rotation solide. Prenons l’exemple le
plus simple : le solide n’a pas de mouvement de translation global, mais un mouvement de
rotation a vitesse angulaire w autour de l'axe (Oz), fixe. Les points appartenant a l’axe sont
immobiles, et les autres points tournent d’autant plus vite qu’ils sont loin de l’axe de rotation.
La vitesse d’un point M quelconque appartenant au solide est alors :

T(M) =3 AOM

Ou l'on a définit le vecteur & = wey. Vérifions cette formule. Posons que H le projeté
orthogonal de M sur 'axe (Oz), la distance de M a l'axe est alors r = HWH. On s’attend a ce
que la vitesse du point M soit un mouvement circulaire de rayon r et de vitesse angulaire w,
soit (M) = rweg.

—— —
Z?/\()AJ::<UEE/\d5??+—f{ﬂ1)::erZ/\EZ::curEZ

A

Figure 25 - Solide indéformable en rotation

4.1 Centre de masse et point d’application

Nous nous intéressons tout d’abord au mouvement de translation d’un solide indéformable.
Considérons un ensemble quelconque de points matériels :

Définition 21 : Centre d’inertie

Le centre d’inertie (ou centre de masse, ou centre de gravité) G d’un systeme de N
points matériels M; de masse m; est défini tel que :

N
=1
ou, défini par rapport a l'origine O d’un référentiel :

N N
mO? = Zmlm avec m = Zml
=1 =1

32/37



O Physicité IPhO : Mécanique

Démonstration : En utilisant la relation de Chasles, ona pour1<i< N : GMZ- = C@+0Mi pour
tout point O de 'espace. En partant de la premiére expression, et en considérant O lorigine
du repeére :

f? = §:£i1”u(623%—6i@ﬁ)
e -y ma@d = YN moM,
< 0 21]117"2 = Zi\ilmlm

1=

Propriété 11 : Théoréme du centre d’inertie

Soit un systéme X constitué de N points matériels : La trajectoire du centre d’inertie G
de ce systéme ne dépend que des forces extérieures qui s’exercent sur ce systéme.

%
magqg = ?eajtﬁE

Démonstration: On considére pour simplifier un systeme de deux points matériels (M;,m,) et
(M2, m2) et on note G son centre de masse et m = m; + ma (cette démonstration se généralise
facilement pour N > 2). Si on applique le principe fondamental de la mécanique a ces deux
points :

—
ma a2 = 2

{ m171 = ?1

L’accélération du centre de masse vaut :

s s

1d; ——»  —— OM, + myOMy Fr+ F

E)G = —— (m10M1 + mQOMQ) = m 1M 2 _ ! !
m dt m m

On peut décomposer les forces s’exergant sur les points matériels M; en une contribution

interne au systeme ?mt—n‘ et une contribution externe au systéme ?m—n-

Puisqu’on considere ici un systéme de deux points matériels, il est facile d’exprimer les forces
internes : Fip1 = For €t Flingyo = Fliso.

Or, d’apres le principe des actions réciproques (ou 2™¢ loi de Newton), on a : ?gﬁl = —?Hg.
On peut ainsi remplacer ceci dans U'expression de ['accélération du centre de masse :

%
mag = ?ext—ﬂ + ?Q—H + ?ext—)Q + ?1—>2
= Fegt—s1+ o1+ Fegtn2— Fos

= ext—1 + ert—2 — ext—X

Remarque : Cette propriété est valable pour des solides indéformables mais aussi pour
des solides déformables. Dans la suite de ce cours, on n’abordera que le cas de solides
indéformables. Remarquons qu’a 'aide du Théoréme du centre d’inertie, le mouvement de
translation d’un solide indéformable est entierement connu. Cependant, un tel solide peut
également tourner sur lui-méme, dans un mouvement dit de rotation propre. Pour étudier ce
mouvement de rotation, il est de mise d’introduire de nouveaux outils.
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4.2 Le moment cinétique
Définition 22 : Moment cinétique

On considere un point matériel (M, m) dans un référentiel R. Son moment cinétique par
rapport a un point A du repére est défini par :

L a(M) = AM AP (M) = mAM AT (M)
ou on rappelle ?(M) est la quantité de mouvement du point matériel M

Le moment cinétique est aux systémes en rotation ce que la quantité de mouvement est
aux systemes en translation. Lorsque le systéme est en rotation autour d’un axe privilégié A,

e . . . . - .
on peut définir un moment cinétique scalaire Ln = Lo - uX avec uZ un vecteur directeur de A
et O un point de la droite.

Définition 23 : Moment d’inertie

Pour un ensemble de N points matériels (M;, m;) dans, on définit le moment d’inertie de
ce systeme par rapport a un axe A défini par son vecteur unitaire directeur o

2
Ja =) mirl,

Ou r, ; est la distance du point matériel M; a 'axe A. En définissant le projeté orthogonal
H; de M; sur A (voir figure 26, onar, ; = HHiMZ-H

Le moment d’inertie est aux systémes en rotation ce que la masse est aux systemes en
translation. C’est une grandeur extensive, dans la mesure ou deux systemes (1) et (2) tournant
autour d’'un méme axe A ont pour moment d’inertie Ja = Ja (1) + Ja (2)-

Remarque : Comment calcule-t-on r| ?

é
"1

Figure 26 — Distance d’un point M a un axe A, projeté orthogonal H
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Forme intégrale : Pour calculer le moment d’inertie d’un solide indéformable S constitue
d’une continuité de point matériels. On utilise ’extensivité du moment d’inertie : un volume
infinitésimal dV & la position 7 contribue (p(7)dV)rZ,,, (avec p(7) la masse volumique,
éventuellement dépendante de la position pour un solide non-homogene, ainsi :

JA :/p(7)r2dV

S

Exemple : Moment d’inertie d’un cylindre homogéne. On se place en coordonnée cylindriques,
et on étudie la rotation d’un cylindre de hauteur H et de rayon R autour de son axe de
symmeétrie (Oz). On donne l'expression d’un volume infinitésimal en coordonnées cylindriques :
dV = rdfdzdr.

H R 2m R R4
1
WINES / / / prirdfdrdz = 2rHp / rdr = 271',0HZ = §mR2
z=01r=06=0 r=0

Comme le sous entend la définition du moment d’inertie, la longueur d’intérét n’est pas la
hauteur mais le rayon du cylindre.

4.3 Moment d’une force

Comme la plupart des grandeurs définies dans cette partie, le moment d’une force est
défini par rapport a un point pivot (ou un axe pivot). Il traduit Uaptitude de cette force a
faire tourner Uobjet sur lequel elle s’applique autour du pivot. C’est ce concept qui permet
d’expliquer pourquoi il est plus difficile d’ouvrir une porte si 'on pousse proche de ses gonds.

Définition 24 : Moment d’une force

Soit 7 une force et P son point d’application. Soit A un point pivot contenant A, A un
axe pivot (défini par son vecteur directeur o : on définit le moment de f par rapport a

A ou par rapport a A : .
Ma(Fy=4BnT

et

Ma(F)=(@APAT)-2

Si la force est la cause de la translation des sytemes mécaniques, le moment d’une force est
la cause de leur mouvement de rotation. Nous sommes tous au fait de la notion de moment
d’une force, parfois sans le savoir, dés lors que 'on a déja essayer d’ouvrir une porte. Vous
pourrez mettre toute la force que vous voulez, si vous poussez la force au niveau des gonds
(donc au niveau de 'axe de rotation de la porte) vous resterez certainement coincé. La maniere
la plus efficace d’ouvrir une porte (a force fixée) est de pousser le plus loin de ’axe de rotation
possible, d’ou la remarque suivante :

Remarque importante : Pour étudier un solide indéformable, le bilan des forces doit mentionner
le point d’application de la force. Malheureusement, déterminer le point d’application d’une
force peut étre non trivial. On pourra simplement retenir :

— Le poids d’un solide s’applique a son centre d’inertie
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Figure 27 — Pendule simple

Exemple : Nous allons illustrer cette définition par le moment du poids pour un pendule. Le
point (ou axe, c’est indifférent puisqu’on se place dans le plan du mouvement) pivot naturel a
choisir est le point d’attache du pendule A (voir figure 27). Comme nous considérons un point
matériel, il n’y a qu’un seul point d’application possible, c’est le point matériel M lui-méme.
Ona ¢ =gcoshe, —gsindey.

On peut en déduire le moment du poids :

./\—/l>,4(?) =1e,N(mgcos0e€, —mgsinfey)
= —mlgsinde,
4.4 Le théoréme du moment cinétique

Avec ces nouveaux outils énoncer un autre théoréme important en mécanique (et oui
encore un). Il s’agit d’un théoreme essentiel pour décrire le mouvement de rotation d’un solide
indéformable autour d’un axe. Commengons par énoncer le théoreme dans le cas du point
matériel :

Propriété 12 : Théoréme du moment cinétique : point matériel

Soit un point matériel (M, m), A un point fixe :

La0D _ 55, (...

Appliquons le Théoréeme du Moment Cinétigque (ou TMC) au cas du pendule simple : Le moment
cinétique du point M par rapport au point A vaut L o(M) = le; A mlfej = mi%0e;, d’ou :

ml%0 + mlgsinf =0
On retrouve a nouveau l’équation différentielle du pendule simple.

Considérons maintenant un solide indéformable, en rotation autour d’un axe fixe. Cette
derniere hypothese simplifie énormément les calculs car le moment cinétique n’a qu’une seule
composante d’intérét : ce n’est plus une quantité vectorielle mais une quantité scalaire.
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Propriété 13 : Théoréme du moment cinétique : solide indéformable

Soit un solide indéformable S, un axe de rotation fixe A, le moment d’inertie de S par
rapport a A Ja. On repere la position du solide par rapport a 'axe de rotation par l’angle

f.0n a: ;
JAd—U; = Ma (?m>
do

aveC w = a

Préparation aux IPhO — version 2025-26 - contributeur-ice-s : Angele Baron, Joseph Moget
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