
Nous devons envisager l’état présent de l’univers comme l’effet de son état antérieur et comme
la cause de celui qui va suivre.

– Pierre-Simon Laplace
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Introduction

La mécanique est le domaine de la physique dont l’objet d’étude est le mouvement et la
déformation des systèmes physiques. On entend par système physique n’importe quelle partie
de l’univers que l’on choisit d’analyser, de l’atome jusqu’à la galaxie, en passant par des objets
qu’il est plus facile d’appréhender à notre échelle, comme une balle de tennis... Cette diversité
de systèmes d’étude donne naissance à différentes sous-branches de la mécanique. Etudier le
mouvement des molécules d’eau dans un tuyau relève de la mécanique des fluides, tandis que
décrire la trajectoire d’une comète relève de la mécanique céleste. Ces sujets ont une racine
commune, la mécanique Newtonienne, ou mécanique classique, dont il est question ici.

L’objectif de ce cours est double : on cherche à décrire le mouvement des sytèmes phy-
siques - c’est la vocation de la cinématique - et prédire ce mouvement en connaissant ses
causes - c’est la vocation de la dynamique. Finalement, pour comprendre le dialogue entre
la mécanique et la thermodynamique, l’électromagnétisme au autre pièce essentielle de la
physique, il est de mise d’interpréter les lois de la dynamiques du point de vue des échanges
d’énergie entre les sytèmes.

1 La cinématique, ou comment décrire le mouvement

Pour étudier un système physique en déplacement, il est nécessaire de choisir un repère,
c’est-à-dire un système de coordonées permettant de situer le système dans l’espace. Il existe
plusieurs systèmes de coordonnées différents, et il est primordial de savoir choisir lequel
utiliser. Un choix de repère judicieux permet de résoudre un problème en quelques lignes, là
où un autre repère mène à des calculs beaucoup plus fastidieux (voire douloureux).

Comment faire le bon choix et économiser de la craie ? On choisit un système de coor-
données en s’appuyant sur les symétries du problème. Il est nécessaire de savoir utiliser les
différents systèmes de coordonnées, et de connaître les expressions correspondantes de la
position, de la vitesse, et de l’accélération. Il est également important de savoir jongler en
passant d’un système de coordonnées à un autre.

1.1 Coordonnées cartésiennes

On munit l’espace d’un repère orthonormé direct (Oxyz).

Figure 1 – Système de coordonnées cartésiennes
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Dans ce système de coordonnées, la position d’un point matériel M est repérée par :

−−→
OM = x−→ex + y−→ey + z−→ez =

x
y
z


Définition 1 : Vecteur position

−−→
OM est appelé vecteur position. Ses composantes x(t), y(t), z(t) sont des fonctions
dépendantes du temps.

Définition 2 : equation*s horaires

On appelle équations horaires les équations qui décrivent l’évolution temporelle du
vecteur position

Exemple : Une particule initialement en O se déplace à vitesse constante v dans le plan (Oxy)
incliné d’un angle α par rapport à l’axe des x.

Figure 2 – Palet glissant sur un plan incliné

Les équations horaires sont : {
x(t) = v cos(α) t
y(t) = v sin(α) t

Définition 3 : Trajectoire

La trajectoire du point M est l’ensemble des positions prises par M au cours du
mouvement.

La trajectoire est donc décrite par une ou plusieurs équation qui ne font pas apparaître
explicitement le temps t.
Exemple : en reprenant l’exemple du plan incliné, la trajectoire est donnée par l’équation :

y = tan(α)x

qui n’est autre que l’équation d’une droite de coefficient directeur tan(α) passant par l’origine.

On cherche maintenant à définir la notion de vitesse. Prenons un coureur qui se déplace sur
une ligne droite, et qui réalise un 100 mètres en 10 secondes. On définit sa vitesse moyenne
sur toute la course comme la distance parcourue divisée par la durée de la course (10 mètres
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par secondes ici). Comme son nom l’indique, cette vitesse est une moyenne, elle est donc
insuffisante pour attester du fait que le coureur peut accélérer pendant la course. On pallie ce
problème en prenant un intervalle de temps de plus en plus court pour évaluer la distance
parcoure.

On définit alors naturellement le vecteur vitesse d’un comme le taux de variation temporel
de la position.

Définition 4 : Vecteur vitesse

On appelle vecteur vitesse instantanée (ou simplement vecteur vitesse) la dérivée
temporelle de la position :

−→v =
d
−−→
OM

dt

Ici, les vecteurs −→ei sont fixes, ils ne dépendent pas du temps. On obtient alors simplement :

−→v (t) =
d
−−→
OM

dt
=

dx

dt
(t)−→ex +

dy

dt
(t)−→ey +

dz

dt
(t)−→ez

Propriété 1 :

Le vecteur vitesse est tangent à la trajectoire.

Figure 3 – Vecteur vitesse d’un oiseau dans un virage

Remarque : On utilisera par la suite la notation ẋ(t) =
dx

dt
(t), ẍ(t) =

d2x

dt2
(t),... Il faut d’autre part

insister sur le fait que le terme "vitesse" est ambigu. En effet, il ne faut pas confondre le
vecteur vitesse (qui possède en général trois composantes) et la norme du vecteur vitesse.

De même, l’accélération est définie comme le taux de variation temporel de la vitesse.

Définition 5 : Vecteur accélération

On appelle vecteur accélération la dérivée temporelle de la vitesse :

−→a =
d−→v
dt

En coordonnées cartésiennes :

−→a (t) =
d2
−−→
OM

dt2
= ẍ(t)−→ex + ÿ(t)−→ey + z̈(t)−→ez
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1.2 Coordonnées polaires et cylindriques

Figure 4 – Système de coordonnées polaires

Nous allons maintenant traiter des coordonnées adaptées aux systèmes qui présentent
un axe privilégié de rotation, par exemple une mouche qui se déplace selon un cercle. Notre
mouche est ici un point M se déplaçant dans le plan (Oxy). On peut repérer sa position de
deux manières différentes :

— Avec les coordonnées (x, y) appelées coordonnées cartésiennes.
On note que x ∈ R et y ∈ R.

— Avec les coordonnées (r, θ), c’est-à-dire la distance à l’origine et l’angle que fait
−−→
OM avec

l’axe des x, appelées coordonnées polaires.
On note que r ∈ [0,+∞[ et θ ∈ [0, 2π[

On peut facilement exprimer ces coordonnées les unes en fonction des autres :
x = r cos(θ)
y = r sin(θ)

r =
√
x2 + y2

Remarque : Ce système de coordonnées est particulièrement adapté à l’étude de mouvements
circulaires, où la distance à l’origine r reste constante.
On définit la base polaire mobile (−→er ,−→eθ ) attachée au point M .

— −→er est appelé vecteur radial, toujours dirigé selon le vecteur
−−→
OM

— −→eθ est appelé vecteur orthoradial, toujours perpendiculaire à −→er dans le sens direct

Dans ce système de coordonnées le vecteur position s’écrit simplement :

−−→
OM = r−→er

Remarque : Ici, il faut noter que les vecteurs unitaires dépendent de la position du point M , et
donc dépendent du temps.
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Méthode 1 : Dérivées de vecteur

Soit f(t) une fonction du temps et −→u (t) un vecteur dépendant du temps :

d(f−→u )

dt
=

df

dt
−→u + f

d−→u
dt

Pour calculer la dérivée par rapport au temps des vecteurs mobiles, il faut les exprimer en
coordonnées cartésiennes :

−→er =

(
cos θ
sin θ

)
−→eθ =

(
sin θ

− cos θ

)
Les vecteurs de la base cartésienne (−→ex,−→ey) ne dépendent pas du temps, on peut simplement
dériver par rapport au temps coordonnée par coordonnée.

d−→er
dt

=

(
−θ̇ sin(θ)

θ̇ cos(θ)

)
= θ̇−→eθ ;

d−→eθ
dt

=

(
−θ̇ cos(θ)

−θ̇ sin(θ)

)
= −θ̇−→er

On en déduit le vecteur vitesse :

−→v = ṙ−→er + rθ̇−→eθ
Dérivons à nouveau pour obtenir le vecteur accélération :

d

dt
(ṙ−→er ) =

dṙ

dt
−→er + r

d−→er
dt

= r̈−→er + ṙθ̇−→eθ
d

dt

(
rθ̇−→eθ

)
=
d(rθ̇)

dt
−→eθ + rθ̇

d−→eθ
dt

= ṙθ̇−→eθ + rθ̈−→eθ + rθ̇(−θ̇−→er )

En additionant et réarrangeant ces deux expressions, on obtient la formule pour l’accélération
en coordonnées polaires.

−→a = (r̈ − rθ̇)−→er + (2ṙθ̇ + rθ̈)−→eθ
Dans un problème à trois dimensions, on introduit les coordonnées cylindriques. Le

mouvement du point M dans le plan (Oxy) est repéré en coordonnées polaires, et on rajoute
son altitude z. Les vecteurs (−→er ,−→eθ ,−→ez ) forment alors une base orthonormée directe.

(x, y, z) −→ (r, θ, z)

La position du point M est alors repérée par :

−−→
OM = r−→er + z−→ez =

r cos θ
r sin θ

z


Les formules de changement de base cartésien/cylindrique sont :
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Figure 5 – Système de coordonnées cylindriques

−→er =

cos θ
sin θ
0

 ; −→eθ =

 sin θ
− cos θ

0

 ; −→ez =

0
0
1


On exprime alors sans mal la vitesse et de l’accélération à partir des résultats précédents :

−→v (t) = ṙ−→er + rθ̇−→eθ + ż−→ez
−→a (t) =

(
r̈ − rθ̇2

)−→er +
(
rθ̈ + 2ṙθ̇

)−→eθ + z̈−→ez

1.3 Coordonnées sphériques

Le système de coordonnées sphériques utilise une longueur r et deux angles, généralement
appelés θ et ϕ.

(x, y, z) −→ (r, θ, ϕ)

Figure 6 – Système de coordonnées sphériques

— r est la distance euclidienne du point M à l’origine du repère. r ∈ [0,+∞[

r =
√

x2 + y2 + z2
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— θ est l’angle que fait le vecteur
−−→
OM avec l’axe vertical z. On note que θ ∈ [0, π], et nous

discuterons sous peu de ce choix de domaine. θ est appelé colatitude.

— On note H le projeté orthogonal de M sur le plan (Oxy), et ϕ est défini comme l’angle
que fait le vecteur

−−→
OH avec l’axe des x. On a ϕ ∈ [0, 2π[. ϕ est appelé longitude.

Remarque : Si θ variait de 0 à 2π, un point d’une sphère de rayon r pourrait être décrit par deux
jeux de coordonnées distincts : (r, θ, ϕ) et (r, 2π − θ, ϕ ± π).
Pour garantir l’unicité des coordonnées, on restreint le domaine de θ à [0, π] !
Un point M(x, y, z) (en coordonnées cartésiennes) est repéré en coordonnées sphériques par :

−−→
OM = r−→er =

x
y
z

 =

r sin θ cosϕ
r sin θ sinϕ

r cos θ


Comme pour la base cylindrique, les vecteurs de la base sphérique dépendent de la position.
Les formules de changement de base cartésien/sphérique sont :

−→er =

sin θ cosϕ
sin θ sinϕ

cos θ

 ; −→eθ =

cos θ sinϕ
cos θ sinϕ
− sin θ

 ; −→eϕ =

− sinϕ
cosϕ
0


Exprimons finalement la vitesse dans ce système de coordonnées :

−→v (t) =
d
−−→
OM

dt
= ṙ−→er + rθ̇−→eθ + r sin θϕ̇−→eϕ

On donne également l’accélération :

ar = r̈ − rθ̇2 − rϕ̇2 sin2 θaθ = rθ̈ + 2ṙθ̇ − rϕ̇2 sin θ cos θaϕ = rϕ̈ sin θ + 2rϕ̇θ̇ cos θ + 2ṙϕ̇ sin θ

1.4 Quelques mouvements particuliers

Définition 6 : Mouvement uniforme

Un mouvement est dit uniforme lorsque la norme du vecteur vitesse est constante.

Remarque : attention, cela n’implique pas que l’accélération est nulle car la direction du
vecteur vitesse peut varier au cours du temps tant que sa norme reste constante.
Remarque : On peut calculer la dérivée temporelle de la norme de la vitesse :

d||−→v ||
dt

=
−→v · −→a
||−→v ||

Cette identité nous apprend qu’un mouvement uniforme est équivalent à un mouvement où le
vecteur vitesse et le vecteur accélération sont orthogonaux.

Définition 7 : Mouvement rectiligne

Un mouvement est dit rectiligne lorsqu’il s’effectue le long d’une droite. Au cours d’un
mouvement rectiligne, le vecteur vitesse −→v conserve sa direction. Un vecteur directeur
de cette droite est le vecteur vitesse de M .
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Mouvement rectiligne uniforme La direction et la norme du vecteur vitesse sont constantes,
le vecteur vitesse lui-même est alors complètement indépendant du temps. On note : −→v (t) =
−→v (t = 0) ≡ −→v0 . Dans ce cas, les équations horaires du mouvement sont :

x(t) = x(t = 0) + v0xt
y(t) = y(t = 0) + v0yt
z(t) = z(t = 0) + v0zt

Mouvement rectiligne uniformément accéléré On parle de mouvement rectiligne uniformé-
ment accéléré lorsque l’accélération est constante sur la durée du mouvement. On note :
−→a (t) = −→a (t = 0) ≡ −→a0 

x(t) = x(t = 0) + ẋ(t = 0)t+ a0x
t2

2

y(t) = y(t = 0) + ẏ(t = 0)t+ a0y
t2

2

z(t) = z(t = 0) + ż(t = 0)t+ a0z
t2

2

Définition 8 : Mouvement circulaire

Un mouvement est dit circulaire lorsqu’il s’effectue le long d’un cercle de centre O. Le
vecteur position s’exprime donc, en coordonnées polaire

−−→
OM = R−→er avec R le rayon du

cercle, fixé.
Au cours d’un mouvement circulaire, le vecteur vitesse −→v est par définition tangent au
cercle, il est donc orthoradial : −→v = Rθ̇−→eθ .

Mouvement circulaire uniforme Le mouvement s’effectue le long d’un cercle, à norme du
vecteur vitesse constante. Le repère le plus adapté pour décrire ce mouvement est le repère
polaire, car la vitesse peut alors orientée selon la direction orthoradiale, et le rayon R = ||

−−→
OM ||

est une constante du mouvement. On note : θ̇ = ω la vitesse angulaire de rotation, qui est elle
aussi constante. En utilisant les formules démontrées précédemment pour les coordonnées
polaires, on a : { −→v = rω−→eθ−→a = −rω2−→er

2 Les lois de la dynamique

Nous avons maintenant les outils nécessaires pour décrire le mouvement d’un système
mécanique. Dans cette section, on introduit entre autres la notion de force, c’est-à-dire
l’origine du mouvement. On cherche à décrire l’effet de ces forces sur un système physique
pour en prédire la trajectoire, à travers les lois de la dynamique.
On notera que, pour rester dans le cadre de la mécanique classique, il faut respecter certaines
conditions :

— on néglige les effets relativistes : v ≪ c où c est la vitesse de la lumière dans le vide.

— on néglige les effets quantiques : la taille caractéristique du système doit être grande
devant la longueur d’onde de De Broglie (prononcée "De Breuille") : l ≫ λdB = h/(mv) où h
est la constante de Planck.
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Figure 7 – Direction des vecteurs vitesse et accélération lors d’un mouvement circulaire
uniforme de rayon r

Méthode 2 : Sur la définition d’un système d’étude

La première chose à faire avant résolution de tout problème (et c’est valable en général
en physique), est de définir le (ou les) système(s) étudié(s).

Si lors des premières applications de la mécanique, le système d’étude apparaît comme
évident, il est néanmoins essentiel de prendre l’habitude de le définir formellement en
préambule. Une fois ce réflexe acquis, il devient bien plus aisé d’étudier des systèmes
complexes. Nous avons précédemment abordé la notion de système physique : en mécanique,
le système le plus fondamental est celui du point matériel.

2.1 Le point matériel

Définition 9 : Point matériel

On appelle point matériel ou masse ponctuelle un système mécanique qui peut être
modélisé par un point géométrique M associé une masse m, et qui peut être décrit
complètement par 3 coordonnées de l’espace au plus.

Exemples de points matériels :

— Un palet en mouvement rectiligne uniforme le long d’une axe (Ox) nécessite une seule
coordonnée x.

— Le mouvement boule de pétanque lors d’un tir peut être décrit à l’aide de trois coordon-
nées (x, y, z).

Exemples de non-points matériels

— Pour décrire un objet comme un javelot, il faut rajouter deux angles pour l’orientation de
la pointe : (m,x, y, z, α, β).

— Deux masses attachées par un ressort
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Dans les faits, un même objet peut être considéré comme un point matériel ou non, selon
le niveau de description que l’on cherche à atteindre. Si on s’intéresse à la chute d’une tartine
de confiture, trois coordonnées spatiales suffisent pour estimer son temps de chute. Si on
souhaite de plus prédire le côté sur lequel la tartine atterrira, il est nécessaire de connaître
également son orientation dans l’espace au cours du temps. Les trois coordonnées ne sont
donc plus suffisantes et on sort du cadre du point matériel.

2.2 Référentiels

Le concept de référentiel est intuitif, et peut être illustré par une situation simple : A est
dans un train qui se déplace par rapport au quai. Pour B qui est aussi dans le train, A est
immobile. Pour C qui est sur le quai, A se déplace avec la même vitesse que le train.

Propriété 2 :

La vitesse et l’accélération dépendent du référentiel R d’observation du mouvement.
Une notation rigoureuse pour exprimer le vecteur vitesse ou l’accélération du point M
dans le référentiel R est alors :

−→v (M,R) , −→a (M,R)

Figure 8 – Schéma de deux référentiels quelconques

Définition 10 : Référentiel

Un référentiel est un solide indéformable (un ensemble de points fixes entre eux) par
rapport auquel on repère une position ou un mouvement. Il est muni de trois axes et
d’une horloge, c’est à dire une mesure du temps.

La figure 8 représente deux systèmes d’axes distincts, chacun "ancré" dans un solide. En
réalité, il n’y a pas besoin de solide matériel pour définir un référentiel, mais cette définition
est commode car il apparait naturellement que deux référentiels en mouvement l’un par
rapport à l’autre peuvent se déplacer en se translatant et/ou en tournant l’un par rapport à
l’autre.
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Exemples :

— Référentiel terrestre RT : il est centré en un point de la terre et ses trois axes sont liés
au globe terrestre.
C’est le référentiel le plus naturel d’utilisation à notre échelle pour décrire par exemple
la trajectoire d’une tartine.
Les axes du référentiel terrestre suivent le mouvement de rotation de la Terre, RT tourne
donc autour du référentiel géocentrique ↓

— Référentiel géocentrique RG : c’est un référentiel dont l’origine est le centre de la Terre
et dont les 3 axes pointent vers des étoiles lointaines considérées comme fixes.
C’est le référentiel de choix pour étudier le mouvement des satellites de la Terre.
Les axes du référentiel terrestre suivent le mouvement de révolution de la Terre autour
du Soleil, RG tourne donc autour du référentiel héliocentrique ↓

— Référentiel héliocentrique RH , ou de Kepler : c’est un référentiel centré sur le centre du
Soleil et dont les trois axes pointent vers des étoiles lointaines. C’est le référentiel de
choix pour étudier le mouvement des satellites du Soleil, comme les planètes du système
solaire (Voir le cours "Mécanique céleste et champs").

Il est important de noter que pour étudier une situation physique donnée, on définit un système
de coordonnées pertinent après avoir précisé le référentiel d’étude. Pour un même référentiel,
on peut choisir d’utiliser différents systèmes de coordonnées.
Remarque : On peut constater qu’il existe une infinité de référentiels possibles. Parmi tous ces
référentiels, on distingue parmi eux une catégorie de référentiels particuliers qu’on appelle les
référentiels galiléens, dans lesquels les lois de le physique sont plus simples, comme nous le
verrons très vite.

2.3 Quantité de mouvement

Définition 11 : La quantité de mouvement

La quantité de mouvement d’un point matériel M est définie comme le produit de sa
vitesse instantanée et de sa masse :

−→p = m−→v

Remarque :

— La quantité de mouvement est une grandeur additive, ainsi pour un ensemble de N points
matériels :

−→p total =

N∑
i=1

−→p i =
N∑
i=1

mi
−→v i

— Tout comme la vitesse, la quantité de mouvement est une grandeur qui dépend du point
matériel M considéré et du référentiel R d’étude : la vitesse d’une mouche dans un train
ne sera pas la même si l’observateur est dans le train ou sur le quai.
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2.4 1ère loi de Newton : principe d’inertie

Définition 12 : Système isolé, système pseudo-isolé

— Un système mécanique est dit isolé lorsqu’il ne subit aucune force extérieure.

— Un système mécanique est dit pseudo-isolé si les forces extérieures qu’il subit se
compensent.

Exemples :

— Un astronaute dans l’espace et infiniment loin de tout astre peut être considéré comme
un système isolé.

— Une tasse sur une table est immobile car son poids est compensé par le support solide.
Nous définirons rigoureusement le poids et cette réaction du support par la suite.

Propriété 3 : Principe d’inertie

Il existe des référentiels privilégiés, dits galiléens ou inertiels dans lesquels un point
matériel isolé ou pseudo-isolé est soit immobile, soit en mouvement rectiligne uniforme.

Remarque :

— Sans force, il n’y a pas de modification du mouvement.

— Ce principe suppose l’existence d’un référentiel privilégié (référentiel galiléen), dont il
donne la définition.

Propriété 4 :

Tout référentiel en translation rectiligne uniforme par rapport à un référentiel galiléen
est un référentiel galiléen.

Exemple : Si le référentiel terrestre est considéré comme galiléen, alors le référentiel associé
à un train qui se déplace sur une ligne droite à vitesse v constante est lui aussi galiléen.

Propriété 5 :

Tout référentiel n’étant pas en translation uniforme par rapport à un référentiel galiléen
n’est pas un référentiel galiléen.

Cela inclue les référentiels en translation accélérée, en rotation, ou même un mélange des deux.
Par exemple référentiel terrestre RT est en rotation par rapport au référentiel héliocentrique
RH .
On constate alors que, si le référentiel géocentrique RG est considéré galiléen, alors le réfé-
rentiel terrestre RT qui est en rotation par rapport à RG, ne peut pas être galiléen. Disons
cependant que l’on étudie un phénomène physique à la surface de la terre, dont la durée est
très inférieure à un jour terrestre, et qui a lieu sur une étendue spatiale très inférieure au rayon
terrestre. On peut se convaincre que dans ce cadre, le mouvement de RT par rapport à RG

est presque une translation rectiligne uniforme, (voir figure 9) et ainsi RT peut être considéré
galiléen pour l’expérience considérée.
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Figure 9 – Déplacement du référentiel terrestre par rapport au référentiel terrestre sur une
petite échelle de temps et d’espace

Méthode 3 : Sur la définition d’un référentiel d’étude

La seconde chose à faire avant résolution de tout problème de mécanique est de définir
le référentiel dans lequel on étudie le mouvement. On précise également si le référentiel
est considéré comme galiléen ou non.

2.5 2ème loi de Newton : principe fondamental de la dynamique

Propriété 6 : Principe fondamental de la dynamique

Dans un référentiel galiléen, la dérivée temporelle de la quantité de mouvement est
égale à la résultante

−→
f des forces s’exerçant sur ce point :

d−→p
dt

= m−→a =
−→
f

Remarque :

— Ce principe fondamental relie les forces qui sont des grandeurs dynamiques (les causes),
et l’accélération, qui est une grandeur cinématique (la conséquence).

— Cette équation permet également d’interpréter la masse m comme une quantité qui
s’oppose à la modification du mouvement du corps. Plus m est grande, plus la force
requise pour modifier l’accélération du corps est importante.

— On notera que
d−→p
dt

= m−→a est vérifié uniquement lorsque le système (ici un point matériel
M a une masse m constante. Si la masse de M diminue au cours du temps (par exemple
dans le cas d’une fusée qui éjecte de la matière), alors un terme supplémentaire appraît
dans l’équation du mouvement.
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2.6 3ème loi de Newton : principe des actions réciproques

Propriété 7 : Principe d’action-réaction

Soit un corps A exerçant une force
−→
f A→B sur un corps B.

— A subit de la part de B une force
−→
f B→A, de même norme, de même direction et de

sens opposé.

−→
f B→A = −

−→
f A→B

—
−→
f A→B et

−→
f B→A sont portées par la droite (AB)

Figure 10 – Principe d’action-réaction

2.7 Quelques forces courantes

Maintenant que les lois sont posées, nous allons creuser dans le détail des forces couram-
ment rencontrées en mécanique. L’inventaire qui suit n’a pas pour vocation d’être exhaustif :
certaines forces chères à la mécanique des fluides comme les forces de pression et la poussée
d’Archimède sont laissées de côté, tout comme certains exemples qui largement plus détaillés
dans le cadre d’un cours sur l’oscillateur harmonique (systèmes massse-ressort).

2.7.1 Interaction gravitationnelle

L’interaction gravitationnelle décrit l’attraction entre deux corps massiques. Il s’agit d’une
force qui agit à distance (elle ne nécessite pas de contacts). C’est cette force qui décrit le
mouvement des planètes dans le système solaire par exemple.

Soit deux corps A et B, respectivement de masse mA et mB, et de position
−→
OA et

−→
OB. On

note r = ||−→OA−−→
OB|| = ||−→AB|| la distance qui les sépare. La force que A exerce sur B est :

−→
f A→B = −G

mAmB

r3
−→AB = −G

mAmB

r2

−→AB
||
−−→
AB||

2.7.2 Champ de pesanteur et poids

On appelle champ de pesanteur le champ attractif qui s’exerce sur les corps massiques.
Ce champ, noté −→g est un champ homogène à une accélération, c’est pourquoi on lui donne
aussi le nom d’accélération de la pesanteur. Le champ de pesanteur d’une planète comme la
Terre provient principalement de la gravité, et il est dirigé vers le centre de la Terre.

On appelle poids la force de pesanteur associée à ce champ. Dans le référentiel terrestre,
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Figure 11 – Force d’interaction gravitionnelle

on la considère souvent comme étant dirigée "vers le bas" : c’est la force qui fait tomber les
pommes des pommiers. Soit un objet de masse m, le poids a pour expression :

−→
P = m−→g

On retiendra la valeur numérique approchée de la norme de l’accélération de la pesanteur :
g ≃ 9.81 m.s−2

Objet en chute libre :

Figure 12 – Chute libre d’un corps de masse m

Un objet est dit en chute libre lorsqu’il n’est soumis qu’à son propre poids. Etudions ce
mouvement élémentaire dans un premier exemple d’application du principe fondamental de la
dynamique :

On étudie un point matériel M de masse m, en chute libre dans le référentiel terresre RT ,
supposé galiléen. On munit l’espace d’un système de coordonnées cartésiennes en notant (Oz)
l’axe vertical ascendant. La force de pensanteur est dirigée selon le vecteur −−→ez . D’après le
principe fondamental de la dynamique (PFD) :

mẍ = 0
mÿ = 0
mz̈ = −mg

En supposant qu’initialement M était complètement immobile, son mouvement est un
mouvement rectiligne uniformément accéléré purement vertical. On peut donc se priver des
deux premières équations qui concernent le mouvement de M selon les axes (Ox) et (Oy). On
remarque également que les masses se simplifient dans la troisième équation : le mouvement
ne dépend pas de la masse de l’objet. En intégrant l’équation selon (Oz), on obtient :

ż(t) = −gt+ C1

16/37



Physicité IPhO : Mécanique

Appliquons les conditions initiales pour éliminer la constante d’intégration :

0 = vz(t = 0) = ż(t = 0) = −g × 0 + C1 = C1

Intégrons à nouveau l’équation pour obtenir l’équation horaire de M :

z(t) = −g
t2

2
+ C2

En supposant qu’initialement M était à l’altitude H :

H = z(t = 0) = C2

Finalement :

z(t) = H − g
t2

2

On peut en déduire le temps τ qu’il faut à M pour atteindre le sol en z = 0, et la vitesse vτ
qu’aura M au niveau du sol :

τ =

√
2
H

g
vτ =

√
2gH

Tir balistique sans frottement :

Figure 13 – Tir balistique d’un objet de masse m

Reprenons la situation précédente, mais avec des conditions initales différentes : M ,
initialement à l’origine O du repère, est lancé avec un vecteur vitesse −→v0 de norme v0 contenu
dans le plan (Oxz), faisant un angle α avec l’axe (Ox). Le PFD s’écrit comme précédemment :{

mẍ = 0
mz̈ = −mg

Ce qui donne après intégration :{
ẋ = C1 = v0 cos(α)
ż = −gt+ C2 = −gt+ v0 sin(α)

D’où les équations horaires :
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 x(t) = v0 cos(α)t

z(t) = −g
t2

2
+ v0 sin(α)t

On détermine alors la trajectoire de M en exprimant par exemple z en fonction de x :

z(x) = −g

2

(
x

v0 cos(α)

)2

+ v0 sin(α)
x

v0 cos(α)

= − g

2v20 cos(α)
2x

2 + tan(α)x

La trajectoire est donc une parabole. On peut à présent définir des quantités remarquable du
mouvement de M .

— La distance horizontale que parcoure M avant de toucher le sol, appelée la portée. On
notera ses coordonnées (xp, 0).

— Le point de plus haute altitude, appelé la flèche. On notera ses coordonnées (xf , zf ).

Commençons par la portée. Il suffit de résoudre l’équation z(x) = 0 pour x > 0. On obtient
rapidement :

xp =
v20
g
2 sin(α) cos(α) =

v20
g

sin(2α)

L’angle α qui maximise la portée est α =
π

4
= 45o.

Passons maintenant à la flèche, lorsque M atteint son apogée. Le maximum de la parabole
vérifie l’équation suivante :

0 =
dz

dx
(xf ) = − g

v20 cos(α)
2xf + tan(α)

xf =
v20
g

sin(α) cos(α)

Finalement,

zf = z(xf ) = − g

2v20 cos(α)
2x

2
f + tan(α)xf = −v20

2g
sin(α)2 +

v20
g

sin(α)2 =
v20
2g

sin(α)2

2.7.3 Frottements fluides

Lorsqu’un objet se déplace dans un fluide liquide ou gazeux, il reçoit une force qui s’oppose
en général à son déplacement. Celle-ci a pour origine la viscosité du fluide, qui résiste à son
écoulement. En fonction de la vitesse à laquelle l’objet se déplace dans le fluide, cette force
peut s’exprimer de plusieurs manières : à "faible" vitesse, la norme de la force de frottement
sera proportionnelle au vecteur vitesse tandis qu’à "hautes" vitesses, la norme de la force sera
quadratique en la vitesse.
Remarques :

— Le changement de régime linéaire -> quadratrique est important à avoir en tête lorsqu’on
conduit : en effet, au-delà d’une certaine vitesse, les frottements deviennent trop
important et la consommation énergétique de la voiture n’est pas optimale.
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— Le vecteur vitesse qui intervient est ici le vecteur vitesse relative du point matériel M par
rapport au fluide qui s’écoule avec le vecteur vitesse −→v (fluide/R).

−→v (M/fluide) = −→v (M/R)−−→v (fluide/R)

Figure 14 – Force de frottements fluides sur une sphère

Dans cas des frottements linéaires, on peut par exemple exprimer la force de frottements
fluides qui s’exerce sur une sphère de rayon R, dans un fluide de viscosité η, dite force de
Stokes :

−→
f frott = −6πηR−→v (M/fluide)

Chute avec frottements fluides linéaires :
Reprenons le cas de la chute libre d’un point matériel M de masse m, qui n’est plus tout à fait
libre puisque l’on prend maintenant en considération les frottements de l’air. Lorsque l’air est
au repos (pas de vents violents), le PFD donne dans la direction verticale :

mz̈ = −mg − λż ⇔ v̇z +
λ

m
vz = −g

λ est un coefficient qui contrôle l’intensité de la force de frottement. On obtient alors une
équation différentielle linéaire à coefficients constants du premier ordre en la vitesse verticale
vz, avec un second membre constant. Plutôt que de se jeter sur la résolution, prenons le temps
d’en extraire des informations intéressantes :

— On remarque que la quantité τ =
m

λ
est homogène à un temps, c’est le temps caractéris-

tique d’évolution de la vitesse du point M .

— Voici l’évolution que prédit l’équation : supposons qu’initialement M soit au repos. Alors
M accélère vers le bas sous l’effet de la pesanteur. Cependant, contrairement à une chute
libre, les frottements s’opposent à cette accélération, et cette opposition est d’autant
plus forte que la vitesse grandit. Ainsi, au bout d’un temps de l’ordre de quelques τ , la
pesanteur et les frottements fluides se compensent, et le point M est quasiment en
mouvement rectiligne uniforme (v̇z ≃ 0).

— On en déduit alors la vitesse terminale du mouvement, qui est aussi la vitesse maximale
que M peut atteindre :

vz,∞ = −gτ

Résolvons tout de même proprement l’équation, qui est linéaire, du premier ordre en vz, à
coefficients constants et avec un second membre constant. On cherche la solution générale
sous la forme : vz = vH + vP avec vH la solution de l’équation homogèe (c.à.d sans second
membre) et vP une solution particulière.
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— L’équation sans second membre admet les solutions vH = Ae−
t
τ

— Comme le second membre est constant, on peut raisonnablement chercher un solution
particulière constante. Hors, nous en avons déjà trouvé une : v∞

Finalement vz = Ae−
t
τ + v∞, avec la condition initiale vz(t = 0) = 0,

vz(t) = v∞(1− e−
t
τ )

Nous avons bien vz(t) →
t→∞

v∞, et on peut de plus interpréter le temps caractéristique τ . En
utilisant 1− e−x ∼

x→0
x, on obtient :

vz(t ∼ 0) ∼ v∞
t

τ
= gt

A temps courts devant τ , on retrouve la vitesse de la chute libre. Ainsi, τ est le temps
à partir duquel les frottement font leur effet sur le système, qui ne peut alors plus être
considéré comme en chute libre.
Chute avec frottements fluides quadratiques :

Dans le cas des frottements fluides quadratiques, la force est de la forme :

−→
f frott = −µ||−→v (M/fluide)||−→v (M/fluide)

Reprenons (encore) un point matériel M initialement immobile laché dans de l’air au repos.
Cette fois-ci :

mz̈ = −mg − µż|ż|

En suivant le même raisonnement que précédemment, on peut déterminer la vitesse aux
temps longs sans avoir à résoudre l’équation différentielle :

vz,∞ = −
√

mg

µ

Comment séparer les deux situations?
Pour estimer la situation dans laquelle on se trouve, il est nécessaire de comparer la vitesse

du point M à une vitesse limite qui sépare les deux régimes. Pour cela, on introduit le nombre
de Reynolds Re, qui e st un nombre sans dimension défini en fonction de la vitesse v du point
M par rapport au fluide, la viscosité dynamique η du fluide et sa masse volumique ρ, ainsi que
la longueur caractéristique L de l’objet M .

Re =
vLρ

η
=

v

vc
vc =

η

Lρ

Les frottements seront linéaires (respectivement quadratiques) lorsque Re << 1 (respective-
ment Re >> 1) ou bien v << vc (respectivement v >> vc).

2.7.4 Réaction d’un support et lois de Coulomb

On définit naturellement la réaction normale d’un support solide qui traduit le fait que
la plupart du temps, les objets solides ne se s’interpénètrent pas (un livre ne traverse pas
la table sur laquelle il est posé). Dans ce cas particulier, la réaction normale de la table
compense exactement le poids du livre. Contrairement à de nombreuses forces précédemment
introduites, cette force n’a pas d’expression systématiquement, c’est ce qu’on appelle une
force de liaison. C’est l’équilibre des forces dans le principe fondamental de la dynamique qui
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permet d’en déterminer une expression explicite.
Prenons un autre exemple, où un palet glisse sans frottement sur un plan lisse, incliné d’un

angle α avec l’horizontale. On choisit de prendre l’axe x parallèle au plan de glisse. La réaction
normale, notée

−→
RN est choisie sur l’axe z :

−→
RN = RN

−→ez

Figure 15 – Glissement sans frottement d’un palet sur un plan incliné

{
mẍ = mg sin(α)
0 = −mg cos(α) +RN

On en déduit que le mouvement du palet est un mouvement rectiligne uniformément
accéléré selon x, et la réaction normale : RN = mg cos(α).

Bien sur, si le plan sur lequel est posé le palet présente une surface rugueuse, on observe
des frottements solides. Ces derniers se traduisent par une force de frottement appelée
réaction tangentielle. Comme son nom l’indique, elle est toujours tangentielle au support et
s’oppose au déplacement du mobile. On choisit de noter ici

−→
RT = −RT

−→ex. Expérimentalement,
on observe que si le plan est assez incliné, alors le palet continue de glisser en dépit des
frottements. On parle alors de frottement dynamique, ou de glissement avec frottement. La
loi de Coulomb sur le glissement avec frottement stipule :

||
−→
RT || = fd||

−→
RN ||

avec fd appelé coefficient de frottement dynamique, qui est souvent de l’ordre de l’unité ou
du dixième de l’unité.
Reprenons l’exemple du palet :

mẍ = mg sin(α)−RT

0 = −mg cos(α) +RN

RT = fdRN


RN = mg cos(α)
RT = fdmg cos(α)
mẍ = mg (sin(α)− fd cos(α))

On remarque ici que l’hypothèse selon laquelle M continue à glisser n’est valide que
si sin(α) > fd cos(α), soit α > arctan(fd). Il existe donc un angle critique à partir duquel les
frottement solides figent le mobile. Si on diminue progressivement l’inclinaison du plan, la
palet finira donc par s’arrèter lorsque α = arctan(fd).

Prenons maintenant le protocole inverse : on commence avec α = 0, et on augmente
progressivement l’inclinaison du plan. Au début le mobile ne bouge pas, puis il commence
à glisser pour un angle critique αc bizarrement supérieur à celui obtenu précédemment...
Introduisons le frottement statique, ou le non-glissement sans frottements. Ici, le palet est
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immobile. Il existe également une loi de Coulomb pour cette situation, qui n’est plus une
égalité mais une inégalité :

||
−→
RT || < fs||

−→
RN ||

avec fs appelé coefficient de frottement statique.
Dès lors que l’inégalité de la loi de Coulomb n’est plus vérifiée, c’est-à-dire lorsque

α > arctan(fs), le palet se met à glisser et on retombe dans le cas des frottements dynamiques.
On a dans la plupart des cas fs > fd : il est souvent plus difficile d’initier le mouvement que de
l’entretenir.

Figure 16 – Frottements dynamiques Figure 17 – Frottements statiques

2.7.5 Tension d’un fil

Il s’agit d’une force difficile à définir, mais intuitive à apprréhender. Tout comme le livre ne
traverse pas la table sur laquelle il est posé, une masse suspendue au bout d’un fil ne tombera
pas malgré la gravité qui s’exerce sur elle, car le fil la retient. C’est cette réalité physique que
la force de tension permet de traduire. Usuellement notée

−→
T , c’est aussi une force de liaison,

ce qui veut dire que bien qu’il n’existe pas de formule générale, on peut déterminer la tension
du fil en équilibrant les forces s’exerçant sur le système. Une chose que l’on peut néanmoins
noter, c’est que cette force est toujours orientée dans la direction du fil, si tenté que celui-ci
soit effectivement tendu.
Quelqu’un a dit pendule simple ?

Figure 18 – Illustration de la tension d’un fil

Pendule simple :
Comme son nom le suggère, c’est le système mécanique le plus simple faisant intervenir une
force de tension. Cet exemple est d’autant plus intéressant qu’il nous permet de manipuler
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pour la première fois les coordonnées polaires.
On étudie un point matériel M de masse m, en mouvement dans le référentiel terresre RT ,
supposé galiléen. On munit l’espace d’un système de coordonnées polaires. M se balance au
bout d’un fil sans masse que l’on suppose tendu à tout instant, de longueur l. M est alors en
mouvement circulaire de rayon l (ce qui simplifie grandement l’expression de l’accélération
car ṙ = 0).
Les forces qui s’appliquent au point M sont :
— Son poids :

−→
P = mg(cos(θ)−→er − sin(θ)−→eθ )

— La tension du fil :
−→
T = −T−→er dont l’expression est à déterminer

Appliquons le PFD : {
−mlθ̇2 = mg sin(θ)− T

mlθ̈ = −mg sin(θ)

Intéressons-nous d’abord à la seconde équation, qui détermine le mouvement du point M . On
peut la réécrire sous la jolie forme suivante :

θ̈ + ω2
0 sin(θ) = 0 ω0 =

√
g

l

Cette équation porte le doux nom d’équation du pendule simple. Nous n’allons évidemment
pas la résoudre telle quelle, mais plutôt étudier le cas limite des petites oscillations autour
de la situation d’équilibre θ = 0. On donne que pour θ << 1rad, sin(θ) ≃ θ. Dans ce cas, on est
ramenés à l’équation différentielle de l’oscillateur harmonique non-amorti (voir le cours sur
l’oscillateur harmonique) :

θ̈ + ω2
0θ = 0

Le mouvement du pendule est périodique, de période T =
2π

ω0
= 2π

√
g

l
.

2.7.6 Loi de Hooke

La loi de Hooke décrit le comportement d’un ressort : elle permet d’exprimer la force d’un
ressort, ou force élastique

−→
F él

Où k est la raideur du ressort, et l0 sa longueur à vide. l est l’élongation du ressort. −→u est
un vecteur unitaire qui pointe toujours dans le sens d’étirement du ressort.

−→
F él = −k(l − l0)

−→u

Figure 19 – Force de rappel d’un ressort en
extension

Figure 20 – Force de rappel d’un ressort en
compression

La résolution de systèmes masse/ressort sera abordé plus précisément lors du cours sur
les oscillateurs harmoniques.
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2.7.7 Interaction Coulombienne

L’interaction Coulombienne décrit l’attraction ou la répulsion entre deux corps possédant
une charge électrique. Il s’agit d’une force qui agit à distance (elle ne nécessite pas de contacts)
et elle est similaire à l’interaction gravitationnelle à de nombreux égards.

Soit deux corps A et B, respectivement de charges qA et qB, et de position −→OA et −→OB. On
note r = ||−→OA−−→

OB|| = ||−→AB|| la distance qui les sépare. La force que A exerce sur B est :

−→
f A→B =

qAqB
4πε0r3

−→
AB =

mAmB

4πε0r2

−→
AB

||
−−→
AB||

Une remarque d’importance est que l’interaction gravitationnelle est toujours négligeable
devant l’interaction Coulombienne. Ansi, lors de l’étude de mouvements de particules chargées
comme des électrons, l’interaction gravitationnelle sera complètement laissée de côté.

2.7.8 Force de Lorentz

La force de Lorentz est la force qu’un champ électromagnétique exerce sur un objet chargé
(i.e. porteur d’une charge électrique). En notant q la charge de l’objet, −→v sa vitesse,

−→
E et

−→
B

décrivent respectivement les champs électrique et magnétique. On a :
−→
FL = q

(−→
E +−→v ∧

−→
B
)

Figure 21 – Force de Lorentz en présence
d’un champ électrique

Figure 22 – Force de Lorentz en présence
d’un champ magnétique

Le symbole ∧ représente un produit vectoriel entre deux vecteurs :ax
ay
az

 ∧

bx
by
bz

 =

aybz − azby
azbx − axbz
axby − aybx


Pour manipuler plus facilement le produit vectoriel, on peut retenir ces 3 règles :

— le produit vectoriel est antisymétrique : −→a ∧
−→
b = −

−→
b ∧ −→a

— −→a ∧ −→a = 0

— (−→a ∧
−→
b ) · −→a = (−→a ∧

−→
b ) ·

−→
b = 0

— −→ex ∧ −→ey = −→ez ; −→ey ∧ −→ez = −→ex ; −→ez ∧ −→ex = −→ey
Les figures 21 and 22 montrent les trajectoires typiques d’un électron (de charge −e) en

présence d’un champ électrique seul, et en présence d’un champ magnétique seul. Pour un
champ électrique constant et homogène, la force de lorentz s’écrit simplement

−→
FL = −e

−→
E :

le mouvement est rectiligne uniformément accéléré. On peut montrer que dans le cas d’un
représenté en figure 22, avec

−→
B un champ magnétique constant et homogène, le mouvement

de l’électron est circulaire uniforme.
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Champ électrique seul :

Choisissons
−→
E = E−→ex. La composante sur l’axe des x de force de Lorentz à laquelle est soumise

l’électron est alors Fx = −eE. Cette force est constante et uniforme, et complètement analogue
au poids dans le référentiel terrestre. Le mouvement de l’électron sur l’axe des x est sans
plus de calculs un mouvement uniformément accéléré dans la direction des x décroissants.

Champ magnétique seul :

Choisissons
−→
B = B−→ez , et calculons le produit vectoriel :

Fx

Fy

Fz

 = −e

vx
vy
vz

 ∧

 0
0
B

 = −e

 ẏB
−ẋB
0


D’où les équations couplées du mouvement, où nous identifions ωc = eB

m à une pulsation
caractéristique appelée ’pulsation cyclotron’ :{

mẍ = −eBẏ
mÿ = eBẋ

⇒
{

ẍ+ ωcẏ = 0
ÿ − ωcẋ = 0

Remarquons que l’on peut simplement intégrer les deux équation par rapport au temps. Nous
introduisons les conditions initiales −→v (t = 0) = v0

−→ex (vitesse initiale perpendiculaire au champ
magnétique),

−−→
OM(t = 0) =

−→
0 . {

ẋ+ ωcy = v0
ẏ − ωcx = 0

Dérivons la première équation par rapport au temps, et injectons la deuxième :{
ẍ+ ωc(ωcx) = 0
ẏ = ωcx

⇒ ẍω2
cx = 0

Finalement, l’équation découplée sur x a pour solutions :
x(t) = Aeiωct +Be−iωct

0 = x(0) = A+B
v0 = ẋ(0) = iωc(A−B)

⇒

 x(t) =
v0
ωc

sin(ωct)

y(t) =
v0
ωc

(1− cos(ωct))

Finalement, la trajectoire de l’électron est un cercle contenu dans le plan (Oxy), de centre
(0, R) et de rayon R =

v0
ωc

.

Remarquons que si l’on avait choisi une vitesse inititale parallèle au champ magnétique, la
force de Lorentz aurait été strictement nulle, et l’électron aurait été en mouvement rectiligne
uniforme sur l’axe des z. Ainsi, en prenant un vecteur vitesse initial quelconque, le mouvement
complet de M est la combinaison de

— Un mouvement rectiligne uniforme sur l’axe (Oz)

— Un mouvement circulaire uniforme sur le plan (Oxyz)

Ce mouvement en ’tire-bouchon’ est appelé mouvement hélicoïdal.
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3 Considérations énergétiques

3.1 Puissance d’une force

Définition 13 : Puissance d’une force

On définit la puissance de la force
−→
f s’appliquant sur le point M de vitesse instantanée

−→v :

P(
−→
f ) =

−→
f · −→v

Remarque :

— Tout comme la vitesse, la puissance est une grandeur qui dépend du point matériel M
considéré et du référentiel R d’étude, bien que cela soit souvent omis dans la notation.

3.1.1 Caractère moteur ou résistant d’une force

— On dit qu’une force est motrice si P(
−→
f ) > 0.

— On dit qu’une force est résistante si P(
−→
f ) < 0.

— On dit qu’une force ne travaille pas si P(
−→
f ) = 0.

Exemples de puissances de forces :

— Force de frottements linéaire : P(
−−−→
ffrott) = −λv2, la force est toujours résistante

— Force réaction normale : P(
−→
RN ) =

−→
N · −→v = 0 car la réaction normale est normale à la

trajectoire. Ainsi, peut importe la forme de la surface, tant que ladite surface est immobile,
la réaction normale ne travaille pas. Il en va de même pour la tension d’un fil tendu.

— Poids : P(
−→
P ) = −mgvz.

— Composante magnétique de la force de Lorentz : on sait que −→v ∧
−→
B ⊥ −→v par propriété du

produit vectoriel, donc la puissance est nulle, cette force ne travaille pas. Comme nous
l’avons vu, elle ne peut que modifier la trajectoire du point matériel.

3.2 Travail d’une force

3.2.1 Vecteur déplacement élémentaire

On considère un point matériel M en déplacement. On appelle déplacement élémentaire
le vecteur

−→
dr(t) qui fait passer M de sa position à l’instant t à sa position à l’instant t + dt.

Autrement dit,
−→
dr(t) dirige la droite tangente à la trajectoire de M à l’instant t.

Figure 23 – Vecteur déplacement élémentaire d’un point matériel M
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Définition 14 : Déplacement élémentaire

Le vecteur déplacement élémentaire est colinéaire au vecteur vitesse, et on a la relation :

−→
dr(t) = −→v (t)dt

Si le mouvement de M est rectriligne d’axe (Ox) par exemple, on a
−→
dr = dx−→ex.

Pour un mouvement circulaire de rayon R, on a
−→
dr = Rdθ−→eθ .

Définition 15 : Travail élémentaire

Le travail élémentaire d’une force est défini comme suit :

δW (
−→
f ) =

−→
f ·

−→
dr =

−→
f · (−→v (t)dt)

En utilisant la relation introduite précédemment pour le déplacement élémentaire :

δW (
−→
f ) =

−→
f ·

−→
dr =

−→
f · (−→v (t)dt) = (

−→
f · −→v (t))dt = P(

−→
f ) dt

Soit un point matériel se déplaçant de la position A à la position B, selon un chemin
quelconque, que l’on note Γ. On définit alors WA→B,Γ(

−→
f ) le travail de la force

−→
f sur le chemin

Γ par la somme des travaux élémentaires sur Γ.

WA→B,Γ(
−→
f ) =

ˆ

Γ,A→B

δW =

B̂

Γ,A

−→
f ·

−→
dr =

tBˆ

tA

P(
−→
f )(t) dt

Remarque :

— Les deux formes intégrales équivalentes ci-dessus peuvent toutes deux être utilisées.
La première est une intégrale sur l’espace, qui ne nécessite pas de connaître les équations
horaires du point matériel.
La seconde est une intégrale sur le temps, qui permet de calculer le travail de la force
en connaissant la vitesse du mobile au préalable.

— Le travail est homogène à une énergie : il correspond à l’énergie fournie par la force lors
de ce déplacement.

Définition 16 : Caractère moteur ou résistant d’une force

Une force est une :

— force motrice si son travail est positif : elle fournie de l’énergie au système.

— force résistante si son travail est négatif : elle prend de l’énergie au système.

Remarque :

— Une force peut être motrice ou résistance selon la portion du mouvement étudié.

— La force de frottement est toujours une force résistance.

— La composante magnétique de la force de Lorentz ne travaille pas : son travail est nul
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Propriété 8 : Théorème de l’Energie Cinétique

Version différentielle :
dEc

dt
= P(

−→
f )

Version intégrale :
Ec(B)− Ec(A) = WA→B,Γ(

−→
f )

On peut démontrer les deux version en faisant le produit scalaire du PFD avec la vitesse du
point M , puis intégrer pour obtenir la version intégrale :

m
d−→v
dt

· −→v =
−→
f · −→v

dEc

dt
=

d

dt

(
1

2
m−→v 2

)
= P(

−→
f )

ˆ

A→B,Γ

dEc

dt
dt =

ˆ

A→B,Γ

P(
−→
f )dt =

ˆ

A→B,Γ

δW (
−→
f )

Ec(B)− Ec(A) = WA→B,Γ(
−→
f )

Distance d’arrêt sur une route rugueuse :
Considérons un véhicule apparenté à un point matériel M de masse m, en déplacement sur
une route plane d’axe (Ox), qui freine à l’instant t = 0. Cette route présente une surface
rugueuse qui présente des frottements solides avec le véhicule, de coefficient de frottements
dynamiques fd. La question est la suivante : si le véhicule a une vitesse v0 à l’instant initial,
quelle distance L parcoure-t-il avant de s’arrêter complètement ? On appelle O le point de
départ et A le point d’arrêt.
On cherche à appliquer le TEC, pour cela on calcule le travail de la force de frottement. D’après
l’équilibre vertical et la loi de Coulomb sur le glissement avec frottements, on a

−→
RT = −mgfd

−→ex,
d’où :

WO→A,Γ =

Â

Γ,O

(−mgfd)
−→ex · −→exdx = −mgfd

L̂

0

dx = −mgfdL

D’après le TEC, on a donc :

Ec(A)− Ec(O) = −mgfdL ⇒ 1

2
mv20 = mgfdL ⇒ L =

v20
2gfd

3.3 Conservation de l’énergie

Définition 17 : Forces conservatives

Une force conservative est une force dont le travail ne dépend pas du chemin suivi :

WA→B,Γ1(
−→
f ) = WA→B,Γ2(

−→
f )

L’énergie potentielle est alors une fonction qui ne dépend que de la position.
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Figure 24 – Deux chemins sous le champ de gravitation terrestre

Exemple : Le poids est une force conservative. Si un skieur descend une piste tout droit (tout
schuss !) ou en slalomant, le travail fourni par son poids sera le même dans les deux cas, et
correspondra à mg∆h avec ∆h est le dénivelé.

Définition 18 : Énergie potentielle

On appelle énergie potentielle l’opposé du travail d’une force conservative : cette énergie
ne dépend que de la position, et est définie à une constante près.

Ep(B)− Ep(A) = −WA→B

Exemple : On appelle énergie potentielle de pesanteur l’énergie associée au poids : Epp(z) = mgz

Propriété 9 : Force dérivant d’un potentiel

Une force conservative
−→
f est une force qui dérive d’une énergie Ep, alors appelée énergie

potentielle : −→
f = −

−→
∇Ep

Pour un problème unidimensionnel, (
−→
f = f(x)−→ex) retenir simplement :

−→
f = −dEp

dx

Qu’est-ce que c’est que ce symbole
−→
∇ ? : Le delta inversé, plus communément appelé "nabla"

désigne, lorsqu’il est coiffé d’une flèche, l’opérateur gradient. C’est un opérateur qui prend en
argument une fonction scalaire et renvoie un vecteur. Soit une fonction de l’espace f(x, y, z).

−→
∇f =

∂f

∂x
−→ex +

∂f

∂y
−→ey +

∂f

∂z
−→ez

Le gradient d’une fonction f est un vecteur qui indique la direction vers laquelle f augmente
le plus. En randonnée, on peut définir l’altitude h(x, y) et

−→
∇h(x, y) indique alors la direction de

la plus grand pente ascendante, au point de coordonnées (x, y).

Qu’est-ce que c’est que ce ∂ bizarre? : Il s’agit d’une dérivée partielle (on dit "d rond" pour
distinguer du "d droit"). Ces dérivées sont introduites dans le cadre des fonctions de plusieurs
variables, par exemple f fonction de trois coordonnées spatiales (x, y, z). Pour calculer la
dérivée partielle par rapport à la variable x, on fixe les variables y = y0 et z = z0, et on applique
la définition classique d’une dérivée : ∂f

∂x (x0, y0, z0) = lim
h→0

f(x0+h, y0, z0)
h .
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Exemple des forces conservatives :
Le poids est une force conservative :

−→
P = m−→g = −mg−→ez = −dEpp

dz
−→ez Epp(z) = mgz + Cste

La force de rappel d’un ressort est aussi conservative et admet pour énergie potentielle :

Eel =
k

2
(l − l0)

2 + Cste

Démonstration de l’expression du travail d’une force conservative : La relation
−→
f = −

−→
∇Ep

peut se réécrire en terme de quantités infinitésimales
−→
f ·

−→
dr = δW = −dEp. A partir de là, on

retrouve l’expression du travail intégral pour M se déplçant de A à B :

WA→B(
−→
f ) = −

ˆ

A→B

dEp = − [Ep(B)− Ep(A)]

Armé de ces nouveaux outils, on peut alors reprendre notre démonstration du théorème de
l’énergie cinétique en séparant les forces en deux catégories, les forces conservatives (

−→
f (c))

et non conservatives (
−→
f (n.c)). On introduit alors l’énergie mécanique, qui est la somme de la

partie cinétique et de la partie potentielle de l’énergie.

Définition 19 : Énergie mécanique

Em = Ec + Ep

Propriété 10 : Théorème de l’Énergie Mécanique

Version différentielle :
dEm

dt
= P(

−→
f (n.c))

Version intégrale :
Ec(B)− Ec(A) = WA→B,Γ(

−→
f (n.c))

m
d−→v
dt

· −→v =
−→
f (c) · −→v +

−→
f (n.c) · −→v

d

dt

(
1

2
m−→v 2

)
=

d

dt
(−Ep(

−→x )) + P(
−→
f (n.c))

d

dt
(Ec + Ep) = P(

−→
f (n.c))ˆ

A→B,Γ

dEm

dt
dt =

ˆ

A→B,Γ

P(
−→
f (n.c))dt =

ˆ

A→B,Γ

δW (
−→
f (n.c))

Em(B)− Em(A) = WA→B,Γ(
−→
f (n.c))

Remarque : On comprend maintenant la terminologie des forces ’conservatives’ : lorsqu’un
système n’est soumis qu’à des forces conservatives, son énergie mécanique est conservée
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dans le temps, c’est une constante du mouvement.

Hauteur maximale de lancer :

Considérons une balle apparenté à un point matériel M de masse m, lancée à la verticale
vers le haut à l’instant t = 0, avec une vitesse initiale v0. Elle est alors en chute libre, et atteint
son apogée à une distance H du sol, que l’on cherche à déterminer.
Connaissant l’expression de l’énergie potentielle de pesnteur, appliquons directement le TEM :

Ec(0) + Ep(0) = Ec(H) + Ep(H) ⇒ 1

2
mv20 = mgH ⇒ H =

v20
2g

où l’on a utilisé le fait qu’à l’apogée, la vitesse du point M doit s’annuler pour changer de
signe.

4 De la mécanique du point à la mécanique du solide

Nous avons insisté sur la définition du point matériel, qui est le système mécanique le plus
simple, et le seul système que nous avons étudié jusqu’à présent. Bien sûr, la mécanique ne
s’arrête pas à l’étude des points matériels mais s’étend à des sytème plus généraux, souvent
plus complexes. À quoi ressemble un système plus complexe qu’un point matériel ? Deux
points matériels, par exemple. Ou bien 3, ou 42, ou encore une infinité de points matériels ! À
cet égard, le point matériel n’est pas seulement une simplification, c’est la brique élémentaire
qui permet d’étudier beaucoup d’autres systèmes par union de points matériels.
Exemples :
— Deux boules reliées par un ressort
— Deux boules reliées par une tige
— Un pendule à deux segments, appelé pendule double
— Deux astres de masses comparables
Ces systèmes sont bien jolis, mais lorsque le nombre de sous-systèmes augmente, ils

deviennent très, très, très difficiles à étudier en pratique. On peut cependant rajouter une
contrainte qui rend l’étude des unions de point matériels bien plus accessible : on se restreint
aux systèmes pour lesquels la distance entre les points matériel reste constante. Cette
hypothèse permet de définir la notion de solide indéformable.

Définition 20 : Solide indéformable

Assemblée de points matériels {Mi}i∈N tel que la distance entre deux points quelconques
reste constante au cours du mouvement :

∀i, j d

dt
||
−−−→
MiMj || = 0

En effet, moyennant quelques nouvelles lois que nous allons vous introduire, il est tout à
fait possible de décrire des mouvements tels que la chute d’un arbre ou la chute d’une tartine
beurrée (oui encore elle).
Remarque importante : Rappelons qu’un point matériel est décrit par 3 coordonnées de
l’espace, c’est un système à 3 degrés de liberté. En toute généralité, un système de N points
matériel en 3 dimensions possède alors 3N degrés de liberté. Le solide indéformable, avec
sa propriété extraordinaire, présente au maximum 6 degrés de liberté (3 en translation, 3
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en rotation). Le mouvement d’un solide indéformable se décompose en un mouvement de
translation global et d’un mouvement de rotation, appelé rotation solide. Prenons l’exemple le
plus simple : le solide n’a pas de mouvement de translation global, mais un mouvement de
rotation à vitesse angulaire ω autour de l’axe (Oz), fixe. Les points appartenant à l’axe sont
immobiles, et les autres points tournent d’autant plus vite qu’ils sont loin de l’axe de rotation.
La vitesse d’un point M quelconque appartenant au solide est alors :

−→v (M) = −→ω ∧
−−→
OM

Où l’on a définit le vecteur −→ω = ω−→ez . Vérifions cette formule. Posons que H le projeté
orthogonal de M sur l’axe (Oz), la distance de M à l’axe est alors r = ||

−−→
HM ||. On s’attend à ce

que la vitesse du point M soit un mouvement circulaire de rayon r et de vitesse angulaire ω,
soit −→v (M) = rω−→eθ .

−→ω ∧
−−→
OM = ω−→ez ∧ (

−−→
OH +

−−→
HM) = ωr−→ez ∧ −→eθ = ωr−→eθ

Figure 25 – Solide indéformable en rotation

4.1 Centre de masse et point d’application

Nous nous intéressons tout d’abord au mouvement de translation d’un solide indéformable.
Considérons un ensemble quelconque de points matériels :

Définition 21 : Centre d’inertie

Le centre d’inertie (ou centre de masse, ou centre de gravité) G d’un système de N
points matériels Mi de masse mi est défini tel que :

N∑
i=1

mi
−−→
GMi =

−→
0

ou, défini par rapport à l’origine O d’un référentiel :

m
−−→
OG =

N∑
i=1

mi
−−→
OMi avec m =

N∑
i=1

mi
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Démonstration : En utilisant la relation de Chasles, on a pour 1 ≤ i ≤ N :
−−→
GMi =

−−→
GO+

−−→
OMi pour

tout point O de l’espace. En partant de la première expression, et en considérant O l’origine
du repère :

−→
0 =

∑N
i=1mi(

−−→
GO +

−−→
OMi)

⇔ −
∑N

i=1mi
−−→
GO =

∑N
i=1mi

−−→
OMi

⇔
−−→
OG

∑N
i=1mi =

∑N
i=1mi

−−→
OMi

⇔ m
−−→
OG =

∑N
i=1mi

−−→
OMi

Propriété 11 : Théorème du centre d’inertie

Soit un système Σ constitué de N points matériels : La trajectoire du centre d’inertie G
de ce système ne dépend que des forces extérieures qui s’exercent sur ce système.

m−→a G =
−→
F ext→Σ

Démonstration : On considère pour simplifier un système de deux points matériels (M1,m1) et
(M2,m2) et on note G son centre de masse et m = m1 +m2 (cette démonstration se généralise
facilement pour N > 2). Si on applique le principe fondamental de la mécanique à ces deux
points : {

m1
−→a 1 =

−→
F 1

m2
−→a 2 =

−→
F 2

L’accélération du centre de masse vaut :

−→a G =
1

m

d

dt

(
m1

−−−→
OM1 +m2

−−−→
OM2

)
=

m1
−−−→
OM1 +m2

−−−→
OM2

m
=

−→
F 1 +

−→
F 1

m

On peut décomposer les forces s’exerçant sur les points matériels Mi en une contribution
interne au système

−→
F int→i et une contribution externe au système

−→
F ext→i.

Puisqu’on considère ici un système de deux points matériels, il est facile d’exprimer les forces
internes :

−→
F int→1 =

−→
F 2→1 et

−→
F int→2 =

−→
F 1→2.

Or, d’après le principe des actions réciproques (ou 2me loi de Newton), on a :
−→
F 2→1 = −

−→
F 1→2.

On peut ainsi remplacer ceci dans l’expression de l’accélération du centre de masse :

m−→a G =
−→
F ext→1 +

−→
F 2→1 +

−→
F ext→2 +

−→
F 1→2

=
−→
F ext→1 +

−→
F 2→1 +

−→
F ext→2 −

−→
F 2→1

=
−→
F ext→1 +

−→
F ext→2 =

−→
F ext→Σ

Remarque : Cette propriété est valable pour des solides indéformables mais aussi pour
des solides déformables. Dans la suite de ce cours, on n’abordera que le cas de solides
indéformables. Remarquons qu’à l’aide du Théorème du centre d’inertie, le mouvement de
translation d’un solide indéformable est entièrement connu. Cependant, un tel solide peut
également tourner sur lui-même, dans un mouvement dit de rotation propre. Pour étudier ce
mouvement de rotation, il est de mise d’introduire de nouveaux outils.
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4.2 Le moment cinétique

Définition 22 : Moment cinétique

On considère un point matériel (M,m) dans un référentiel R. Son moment cinétique par
rapport à un point A du repère est défini par :

−→
LA(M) =

−−→
AM ∧ −→p (M) = m

−−→
AM ∧ −→v (M)

où on rappelle −→p (M) est la quantité de mouvement du point matériel M

Le moment cinétique est aux systèmes en rotation ce que la quantité de mouvement est
aux systèmes en translation. Lorsque le système est en rotation autour d’un axe privilégié ∆,
on peut définir un moment cinétique scalaire L∆ =

−→
LO · −→u∆ avec −→u∆ un vecteur directeur de ∆

et O un point de la droite.

Définition 23 : Moment d’inertie

Pour un ensemble de N points matériels (Mi,mi) dans, on définit le moment d’inertie de
ce système par rapport à un axe ∆ défini par son vecteur unitaire directeur −→u :

J∆ =
∑

mir
2
⊥,i

Où r⊥,i est la distance du point matériel Mi à l’axe ∆. En définissant le projeté orthogonal
Hi de Mi sur ∆ (voir figure 26, on a r⊥,i = ||

−−−→
HiMi||

Le moment d’inertie est aux systèmes en rotation ce que la masse est aux systèmes en
translation. C’est une grandeur extensive, dans la mesure où deux systèmes (1) et (2) tournant
autour d’un même axe ∆ ont pour moment d’inertie J∆ = J∆,(1) + J∆,(2).

Remarque : Comment calcule-t-on r⊥ ?

−→r ⊥,i =
−−−→
HiMi =

−−→
OM i −

−−→
OH i

r2⊥,i =
−−→
OM i ·

−−−→
HiMi −

−−→
OH i ·

−−−→
HiMi =

−−→
OM i ·

−−−→
HiMi

Figure 26 – Distance d’un point M à un axe ∆, projeté orthogonal H
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Forme intégrale : Pour calculer le moment d’inertie d’un solide indéformable S constitué
d’une continuité de point matériels. On utilise l’extensivité du moment d’inertie : un volume
infinitésimal dV à la position −→r contribue (ρ(−→r )dV )r2perp, (avec ρ(−→r ) la masse volumique,
éventuellement dépendante de la position pour un solide non-homogène, ainsi :

J∆ =

ˆ

S

ρ(−→r )r2dV

Exemple : Moment d’inertie d’un cylindre homogène. On se place en coordonnée cylindriques,
et on étudie la rotation d’un cylindre de hauteur H et de rayon R autour de son axe de
symmétrie (Oz). On donne l’expression d’un volume infinitésimal en coordonnées cylindriques :
dV = rdθdzdr.

J∆ =

Ĥ

z=0

R̂

r=0

2πˆ

θ=0

ρr2rdθdrdz = 2πHρ

R̂

r=0

r3dr = 2πρH
R4

4
=

1

2
mR2

Comme le sous entend la définition du moment d’inertie, la longueur d’intérêt n’est pas la
hauteur mais le rayon du cylindre.

4.3 Moment d’une force

Comme la plupart des grandeurs définies dans cette partie, le moment d’une force est
défini par rapport à un point pivot (ou un axe pivot). Il traduit l’aptitude de cette force à
faire tourner l’objet sur lequel elle s’applique autour du pivot. C’est ce concept qui permet
d’expliquer pourquoi il est plus difficile d’ouvrir une porte si l’on pousse proche de ses gonds.

Définition 24 : Moment d’une force

Soit
−→
f une force et P son point d’application. Soit A un point pivot contenant A, ∆ un

axe pivot (défini par son vecteur directeur −→u : on définit le moment de
−→
f par rapport à

A ou par rapport à ∆ : −→
MA(

−→
f ) =

−→
AP ∧

−→
f

et

M∆(
−→
f ) = (

−→
AP ∧

−→
f ) · −→u

Si la force est la cause de la translation des sytèmes mécaniques, le moment d’une force est
la cause de leur mouvement de rotation. Nous sommes tous au fait de la notion de moment
d’une force, parfois sans le savoir, dès lors que l’on a déjà essayer d’ouvrir une porte. Vous
pourrez mettre toute la force que vous voulez, si vous poussez la force au niveau des gonds
(donc au niveau de l’axe de rotation de la porte) vous resterez certainement coincé. La manière
la plus efficace d’ouvrir une porte (à force fixée) est de pousser le plus loin de l’axe de rotation
possible, d’où la remarque suivante :
Remarque importante : Pour étudier un solide indéformable, le bilan des forces doit mentionner
le point d’application de la force. Malheureusement, déterminer le point d’application d’une
force peut être non trivial. On pourra simplement retenir :

— Le poids d’un solide s’applique à son centre d’inertie
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Figure 27 – Pendule simple

Exemple : Nous allons illustrer cette définition par le moment du poids pour un pendule. Le
point (ou axe, c’est indifférent puisqu’on se place dans le plan du mouvement) pivot naturel à
choisir est le point d’attache du pendule A (voir figure 27). Comme nous considérons un point
matériel, il n’y a qu’un seul point d’application possible, c’est le point matériel M lui-même.
On a −→g = g cos θ−→e r − g sin θ−→e θ.
On peut en déduire le moment du poids :

−→
MA(

−→
P ) = l−→e r ∧ (mg cos θ−→e r −mg sin θ−→e θ)

= −ml g sin θ−→e z

4.4 Le théorème du moment cinétique

Avec ces nouveaux outils énoncer un autre théorème important en mécanique (et oui
encore un). Il s’agit d’un théorème essentiel pour décrire le mouvement de rotation d’un solide
indéformable autour d’un axe. Commençons par énoncer le théorème dans le cas du point
matériel :

Propriété 12 : Théorème du moment cinétique : point matériel

Soit un point matériel (M,m), A un point fixe :

d
−→
LA(M)

dt
=

−→
MA

(−→
F ext

)
Appliquons le Théorème du Moment Cinétique (ou TMC) au cas du pendule simple : Le moment
cinétique du point M par rapport au point A vaut

−→
LA(M) = l−→er ∧mlθ̇−→eθ = ml2θ̇−→ez , d’où :

ml2θ̈ +mlg sin θ = 0

On retrouve à nouveau l’équation différentielle du pendule simple.

Considérons maintenant un solide indéformable, en rotation autour d’un axe fixe. Cette
dernière hypothèse simplifie énormément les calculs car le moment cinétique n’a qu’une seule
composante d’intérêt : ce n’est plus une quantité vectorielle mais une quantité scalaire.
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Propriété 13 : Théorème du moment cinétique : solide indéformable

Soit un solide indéformable S, un axe de rotation fixe ∆, le moment d’inertie de S par
rapport à ∆ J∆. On repère la position du solide par rapport à l’axe de rotation par l’angle
θ. On a :

J∆
dω

dt
= M∆

(−→
F ext

)
avec ω = dθ

dt

Préparation aux IPhO – version 2025-26 – contributeur·ice·s : Angèle Baron, Joseph Moget
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